Skip to content

Commit

Permalink
docs: update NBLAST tutorial
Browse files Browse the repository at this point in the history
  • Loading branch information
schlegelp committed Jun 5, 2022
1 parent 8d5988e commit 82a7add
Showing 1 changed file with 5 additions and 162 deletions.
167 changes: 5 additions & 162 deletions docs/source/tutorials/nblast.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -26,13 +26,13 @@
".. image:: ../../_static/NBLAST_neuron_comparison.png\n",
" :width: 500\n",
" :align: center\n",
" \n",
" \n",
"2. Produce a raw score \n",
"======================\n",
"\n",
"The raw score is a `weighted` product from the distance :math:`d_{i}` between the points in each pair and the absolute dot product of the two tangent vectors :math:`| \\vec{u_i} \\cdot \\vec{v_i} |`.\n",
"\n",
"The absolute dot product is used because the orientation of the tangent vectors has no meaning in our data representation).\n",
"The absolute dot product is used because the orientation of the tangent vectors has no meaning in our data representation.\n",
"\n",
"A suitable scoring function :math:`f` was determined empirically (see the NBLAST `paper <http://flybrain.mrc-lmb.cam.ac.uk/si/nblast/www/paper/>`_) and is shipped with ``navis`` as scoring matrices:\n",
"\n",
Expand Down Expand Up @@ -66,6 +66,8 @@
".. math::\n",
"\n",
" S(query,target)=\\sum_{i=1}^{n}f(d_{i}, |\\vec{u_i} \\cdot \\vec{v_i}|) \n",
" \n",
"One important thing to keep in mind is this: the direction of the comparison matters! Consider two very different neurons - one large, one small - that overlap in space. If the small neuron is the query, you will always find a close-by nearest-neighbour among the many points of the large target neuron. Consequently, this small -> large comparison will produce decent NBLAST score. Conversely, the other way around (large -> small) will likely produce a bad NBLAST score because many points in the large neuron are far away from the closests point in the small neuron. In practice, we typically use the mean between those two scores. This is done either by running two nblasts (query -> target and target -> query), or by using the ``scores`` parameter of the respective NBLAST function. \n",
"\n",
"\n",
"Running NBLAST\n",
Expand Down Expand Up @@ -1112,166 +1114,7 @@
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
"0b7795116efa43c08495c21e53515a51": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"layout": "IPY_MODEL_b5c7d7fa41d2413284405a27764befd0",
"style": "IPY_MODEL_ce65b7f058fd42ce8d3c3165d45c5051",
"value": "Dotprops: 100%"
}
},
"164bb451fda146348ac4163ea6374f84": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"layout": "IPY_MODEL_17e330acd6654e37b46d0e933415b525",
"style": "IPY_MODEL_53b2b42866e441e3a9caf8444283b819",
"value": " 5/5 [00:00&lt;00:00, 25.53it/s]"
}
},
"17e330acd6654e37b46d0e933415b525": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {}
},
"29aed05198a44a2080beb9db3056e387": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"description_width": ""
}
},
"4272838328c347b6815a6694f5e98bbc": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"description_width": ""
}
},
"515835f0ff5d4d93a843ad02676ecc3c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {}
},
"51719207cfea4ff08983868bce1e8b2c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {}
},
"53b2b42866e441e3a9caf8444283b819": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"description_width": ""
}
},
"80236c41239946cf9c5692b02be0e279": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {}
},
"84ec4245daf14f4cb3b98fb573d9952e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {}
},
"9d1751b4a1f84d609fb8d6c6212641a7": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"layout": "IPY_MODEL_84ec4245daf14f4cb3b98fb573d9952e",
"style": "IPY_MODEL_4272838328c347b6815a6694f5e98bbc",
"value": " 0/5 [00:00&lt;?, ?it/s]"
}
},
"ad54b908627043799dfc6d91d2fdfc02": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"layout": "IPY_MODEL_51719207cfea4ff08983868bce1e8b2c",
"style": "IPY_MODEL_efa3a7f239f149dcbdcfbc690201cb4e",
"value": "Dividing: 0%"
}
},
"b5c7d7fa41d2413284405a27764befd0": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {}
},
"c904201d3b454fbe9a443b8a7a85b58e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {}
},
"c9dc8bfa8437427f95b5f023fdd3b318": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"layout": "IPY_MODEL_c904201d3b454fbe9a443b8a7a85b58e",
"max": 5,
"style": "IPY_MODEL_feb484342b2e4764bc5f1c1343589e05",
"value": 5
}
},
"ce65b7f058fd42ce8d3c3165d45c5051": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"description_width": ""
}
},
"efa3a7f239f149dcbdcfbc690201cb4e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"description_width": ""
}
},
"f81240c1a862447887096b1539727125": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"layout": "IPY_MODEL_f854abbc9cdd40d8b6b85918f5966c97",
"max": 5,
"style": "IPY_MODEL_29aed05198a44a2080beb9db3056e387",
"value": 5
}
},
"f854abbc9cdd40d8b6b85918f5966c97": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {}
},
"feb484342b2e4764bc5f1c1343589e05": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"description_width": ""
}
}
},
"state": {},
"version_major": 2,
"version_minor": 0
}
Expand Down

0 comments on commit 82a7add

Please sign in to comment.