Skip to content

Commit

Permalink
SWC io: DFS-sort nodes, optionally do not reindex
Browse files Browse the repository at this point in the history
Previously, nodes were sorted by parent index, which would ensure that
root nodes appear before non-roots but did not guarantee that all
children are defined after their parent.
Now, nodes are sorted in depth-first order (addressing their children in
order of their index).

Additionally, added the option of return_node_map=None, which does not
re-index nodes before writing.
This is useful when exporting a SWC files of several neurons along with
where node IDs must persist their global uniqueness.

Finally, adds a label "9" for nodes which have both pre- and
post-synapses.
  • Loading branch information
clbarnes committed Nov 23, 2022
1 parent da2f777 commit d87fc26
Showing 1 changed file with 80 additions and 25 deletions.
105 changes: 80 additions & 25 deletions navis/io/swc_io.py
Original file line number Diff line number Diff line change
Expand Up @@ -453,9 +453,12 @@ def write_swc(x: 'core.NeuronObject',
this might drop synapses (i.e. in case of multiple
pre- and/or postsynapses on a single node)! ``labels``
must be ``True`` for this to have any effect.
return_node_map : bool
return_node_map : bool, optional
If True, will return a dictionary mapping the old node
ID to the new reindexed node IDs in the file.
If False (default), will reindex nodes but not return the mapping.
If None, will not reindex nodes (i.e. their current IDs will be written).
Returns
-------
Expand Down Expand Up @@ -535,7 +538,7 @@ def _write_swc(x: 'core.TreeNeuron',
write_meta: Union[bool, List[str], dict] = True,
labels: Union[str, dict, bool] = True,
export_connectors: bool = False,
return_node_map: bool = False) -> None:
return_node_map: Optional[bool] = False) -> None:
"""Write single TreeNeuron to file."""
# Generate SWC table
res = make_swc_table(x,
Expand Down Expand Up @@ -589,6 +592,45 @@ def _write_swc(x: 'core.TreeNeuron',
return node_map


def sort_swc(df: pd.DataFrame, roots, sort_children=True, inplace=False):
"""Depth-first search tree to ensure parents are always defined before children."""
children = defaultdict(list)
node_id_to_orig_idx = dict()
for row in df.itertuples():
child = row.node_id
parent = row.parent_id
children[parent].append(child)
node_id_to_orig_idx[child] = row.index

if sort_children:
to_visit = sorted(roots, reverse=True)
else:
to_visit = list(roots)[::-1]

idx = 0
order = np.full(len(df), np.nan)
count = 0
while to_visit:
node_id = to_visit.pop()
order[node_id_to_orig_idx[node_id]] = count
cs = children.pop(order[-1], [])
if sort_children:
to_visit.append(sorted(sort_children, reverse=True))
else:
to_visit.append(cs[::-1])
count += 1

# undefined behaviour if any nodes are not reachable from the given roots

if not inplace:
df = df.copy()

df["_order"] = order
df.sort_values("_order", inplace=True)
df.drop(columns=["_order"])
return df


def make_swc_table(x: 'core.TreeNeuron',
labels: Union[str, dict, bool] = None,
export_connectors: bool = False,
Expand All @@ -606,17 +648,20 @@ def make_swc_table(x: 'core.TreeNeuron',
str : column name in node table
dict: must be of format {node_id: 'label', ...}.
bool: if True, will generate automatic labels, if False all nodes have label "0".
bool: if True, will generate automatic labels for branches ("5") and ends ("6"),
soma where labelled ("1"), and optionally connectors (see below).
If False (or for all nodes not labelled as above) all nodes have label "0".
export_connectors : bool, optional
If True, will label nodes with pre- ("7") and
postsynapse ("8"). Because only one label can be given
this might drop synapses (i.e. in case of multiple
pre- or postsynapses on a single node)! ``labels``
must be ``True`` for this to have any effect.
return_node_map : bool
If True, will label nodes with only presynapses ("7"),
only postsynapses ("8"), or both ("9").
This overrides branch/end/soma labels.
``labels`` must be ``True`` for this to have any effect.
return_node_map : bool, optional
If True, will return a dictionary mapping the old node
ID to the new reindexed node IDs in the file.
If False, will remap IDs but not return the mapping.
If None, will not remap IDs.
Returns
-------
Expand All @@ -625,8 +670,8 @@ def make_swc_table(x: 'core.TreeNeuron',
Only if ``return_node_map=True``.
"""
# Work on a copy
swc = x.nodes.copy()
# Work on a copy sorted in depth-first order
swc = sort_swc(x.nodes, x.root, inplace=False)

# Add labels
swc['label'] = 0
Expand All @@ -642,31 +687,41 @@ def make_swc_table(x: 'core.TreeNeuron',
if not isinstance(x.soma, type(None)):
soma = utils.make_iterable(x.soma)
swc.loc[swc.node_id.isin(soma), 'label'] = 1

if export_connectors:
# Add synapse label
pre_ids = x.presynapses.node_id.values
post_ids = x.postsynapses.node_id.values
swc.loc[swc.node_id.isin(pre_ids), 'label'] = 7
swc.loc[swc.node_id.isin(post_ids), 'label'] = 8

# Sort such that the parent is always before the child
swc.sort_values('parent_id', ascending=True, inplace=True)

# Reset index
swc.reset_index(drop=True, inplace=True)
is_pre = swc["node_id"].isin(pre_ids)
swc.loc[is_pre, 'label'] = 7

# Generate mapping
new_ids = dict(zip(swc.node_id.values, swc.index.values + 1))
is_post = swc["node"].isin(post_ids)
swc.loc[is_post, 'label'] = 8

swc['node_id'] = swc.node_id.map(new_ids)
# Lambda prevents potential issue with missing parents
swc['parent_id'] = swc.parent_id.map(lambda x: new_ids.get(x, -1))
is_both = np.logical_and(is_pre, is_post)
swc.loc[is_both, 'label'] = 9

# Get things in order
# Order columns
swc = swc[['node_id', 'label', 'x', 'y', 'z', 'radius', 'parent_id']]

# Make sure radius has no `None`
# Make sure radius has no `None` or negative
swc['radius'] = swc.radius.fillna(0)
swc['radius'][swc['radius'] < 0] = 0

if return_node_map is not None:
# remap IDs

# Reset index
swc.reset_index(drop=True, inplace=True)

# Generate mapping
new_ids = dict(zip(swc.node_id.values, swc.index.values + 1))

swc['node_id'] = swc.node_id.map(new_ids)
# Lambda prevents potential issue with missing parents
swc['parent_id'] = swc.parent_id.map(lambda x: new_ids.get(x, -1))


# Adjust column titles
swc.columns = ['PointNo', 'Label', 'X', 'Y', 'Z', 'Radius', 'Parent']
Expand Down

0 comments on commit d87fc26

Please sign in to comment.