Skip to content

Hierarchically Fused Fully Convolutional Network for Robust Building Extraction ACCV 2016

Notifications You must be signed in to change notification settings

nidetaoge/HF-FCN-for-Robust-Building-Extraction

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

62 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This is a state-of-the-art project for building extraction in high resolution remote sensing image using dataset Massachusetts road & building dataset . And, our approach was published in ACCV 2016, clik here to download our paper

Requirements

  • caffe-fcn-master
  • OpenCV 2.4.13
  • CUDA V8.0
  • CUDNN V5.0
  • Boost 1.59.0
  • Boost.NumPy
  • ssai-lib

Boost 1.59.0

tar zxvf boost_1_59_0.tar.gz 
cd boost_1_59_0 
./bootstrap.sh --with-libraries=all --with-toolset=gcc 
./b2 toolset=gcc 
sudo ./b2 install --prefix=/usr 
sudo ldconfig

Boost.NumPy

git clone https://github.com/ndarray/Boost.NumPy.git 
cd Boost.Numpy  
mkdir build 
cd build 
cmake ..   
vim ../CMakeLists.txt   

add some codes before find_package(Boost COMPONENTS Python REQUIRED)  
set(BOOST_ROOT “/usr/include/boost”) 
set(Boost_LIBRARIES “/usr/include/boost/lib”)   
set(Boost_INCLUDE_DIRS “/usr/include/boost/include”) 
set(BOOST_LIBRARYDIR “/usr/include/boost/lib”) 

sudo make 
sudo make install 

ssai-lib

cd ssai-lib/
mkdir build
cd build
cmake ..
make 

Create Dataset

sh shells/download_minh_dataset.sh  
python scripts/create_dataset_256.py  
python scripts/verify_dataset.py -d /data/mass_building/lmdb/train_sat_256 

Start Training

cd models/HF-FCN_Models/BasicNet/  
nohup python solve.py& 

Prediction

cd results/  
python ../scripts/run_prediction.py 
				 --model ../models/HF-FCN_Models/BasicNet/predict.prototxt  
				 --weight ../weights/HF-FCN_iter_12000.caffemodel  
				 --img_dir /data/mass_buildings/source/test/sat  

Evaluation

cd results/prediction_12000   
python ../../scripts/run_evaluation.py   
			--map_dir /data/mass_buildings/source/test/map   
			--result_dir HF-FCN_whole_image_prediction_12000

Results Comparision

whole image comparision

cd shells/
sh run_pr_curve_comparision.sh
                                              Recall ( \rho = 3 ) Recall ( \rho = 0) Time (s)
Mnih-CNN \cite{Mnih2013Machine} 0.9271 0.7661 8.70
Mnih-CNN+CRF \cite{Mnih2013Machine} 0.9282 0.7638 26.60
Saito-multi-MA \cite{Saito2016Multiple} 0.9503 0.7873 67.72
Saito-multi-MA&CIS \cite{Saito2016Multiple} 0.9509 0.7872 67.84
Ours (HF-FCN)                               0.9643             0.8424             1.07 

challenge patches comparision

cd shells/
sh run_recall_comp_for_challenge_patches.sh
Method\Image ID 01 02 03 04 05 06 07 mean
Mnih-CNN+CRF\cite{Mnih2013Machine} 0.784 0.869 0.769 0.653 0.893 0.764 0.800 0.784
Saito-multi-MA&CIS\cite{Saito2016Multiple} 0.773 0.915 0.857 0.789 0.945 0.773 0.830 0.851
Ours (HF-FCN) 0.874 0.964 0.899 0.901 0.986 0.840 0.851 0.911

Pre-trained models

HF-FCN16-iter-12000.caffemodel
Minh13-Machine.caffemodel
Saito16-Multiple-caffemodels

Predicted results

HF-FCN16-results
Mnih13-Machine-results
Saito16-Multiple-results

Reference

If you use this code for your project, please cite this conference paper:
Tongchun Zuo, Juntao Feng, Xuejin Chen. "HF-FCN: Hierarchically Fused Fully Convolutional Network for Robust Building Extraction". Asian Conference of Computer Vision. 2016.

About

Hierarchically Fused Fully Convolutional Network for Robust Building Extraction ACCV 2016

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Makefile 35.2%
  • Jupyter Notebook 28.2%
  • C++ 21.8%
  • CMake 7.0%
  • Python 4.1%
  • Cuda 1.4%
  • Other 2.3%