Skip to content

Latest commit

 

History

History
180 lines (163 loc) · 5.47 KB

README.md

File metadata and controls

180 lines (163 loc) · 5.47 KB

activation_function.py

Imgur


DNN.py - deep neural network

basic deep learning model to classify number's images from 0 to 9

  • data : MNIST
  • layer : 28*28=784 -> 1024 -> 32 -> 10
  • activation function : softmax
  • additional : dropout
  • optimizier : Adam + min-batch
epochs = 101
- Train Accuracy :  0.908382
-  Test Accuracy :  0.9068

CNN.py - Convolutional Neuron Networks

apply CNN model to classify number's images from 0 to 9

  • data : MNIST
  • layer : 28 * 28 * 1 -> 14 * 14 * 4 -> 7 * 7 * 8 -> 512 -> 10
  • activation function : Relu, Sigmoid
  • additional : dropout
  • optimizier : Adam + min-batch
epochs = 11
      | Relu	  | Sigmoid   | None
Train | 0.990234    | 0.953125  | 0.984375
Test  | 0.9875	  | 0.9595    | 0.9826
*Train only measure min-batch

TensorBoard.py

use CNN.py model to create tensorbaord for visualize model structure

  • model structure
    Imgur
  • layer detail
    Imgur

Autoencoder.py

reduce dimension for MNIST images cluster & visualization

  • data : MNIST
  • layer : 28*28=784 -> 512 -> 256 -> 64 -> 2 -> 64 -> 256 -> 512 -> 784
  • activation function : Sigmoid
  • optimizier : Adam + min-batch
epochs = 101
- Train Loss :  0.0713046
-  Test Loss :  0.0757816
  • original image VS decoder
    Imgur

  • cluster by encoder
    Imgur


t-SNE_PCA.py - t-Distributed Stochastic Neighbor Embedding / Principal components analysis

reduce dimension for MNIST images cluster & visualization

  • PCA
  • t-SNE
  • PCA + t-SNE : combine PCA and t-SNE to prevent performance issue when apply t-SNE with high dimension data
used_time
- PCA          0:00:00.782207
- t-SNE        0:04:43.643358
- PCA + t-SNE  0:03:29.427107

Imgur


VAE.py - Variational Autoencoder

apply autoencoder to decode image, and generate new image by select new decode data

  • data : MNIST
  • layer : 28*28=784 -> 512 -> 512 -> 2(mean, var) -> 512 -> 512 -> 784
  • activation function : softplus, sigmoid
  • optimizier : Adam + min-batch
Epoch: 1 cost= 196.581512416
Epoch: 21 cost= 146.854643957
Epoch: 41 cost= 142.512102212
Epoch: 61 cost= 140.136859013
Epoch: 81 cost= 138.670617768
Epoch: 101 cost= 137.499377324
  • original image VS decoder
    Imgur
  • generate images
    Imgur

RNN.py - Recurrent Neural Networks

  • data : MNIST
  • layer : encoder(time, data -> time, feature) > RNN(time, feature -> time, est.feature) > decoder(est.feature -> class)
  • RNN type :
    • basicRNN
    • LSTM (long short-term memory)
    • GRU (Gated Recurrent Units)

Imgur


Skip-Gram.py

estimated probability of each words close to the target word

  • data : http://mattmahoney.net/dc/text8.zip
  • layer : target word -> embedding to vector(embedding matrix * target word one-hot-encoding) -> linear model(W*V + b) = probability for each word connect to target -> softmax -> loss = cross entropy with label
  • additional : Sampled Softmax
  • optimizier : AdagradOptimizer
*  20000 Average loss : 3.73424506655
*  40000 Average loss : 3.44429408045
*  60000 Average loss : 3.39420536309
*  80000 Average loss : 3.36515107585
* 100000 Average loss : 3.19453594169
Nearest to 'were'  : are, have, was, had, while, those, been, although,
Nearest to 'state' : city, states, territory, republic, shadowed, drum, gums, frites,

Imgur


CBOW.py - Continuous Bag of Words

estimated target word base on input words

  • data : http://mattmahoney.net/dc/text8.zip
  • layer : input words(connect to target) -> sum(embedding input to vector) -> probability of target word -> softmax -> loss = cross entropy with label
  • additional : Sampled Softmax
  • optimizier : AdagradOptimizer
*  20000 Average loss : 3.12684643236
*  40000 Average loss : 2.92018117781
*  60000 Average loss : 2.83985439647
*  80000 Average loss : 2.76869805927
* 100000 Average loss : 2.57371024392
Nearest to eight : nine, seven, six, four, five, three, zero, two, 
Nearest to often : usually, sometimes, generally, commonly, frequently, typically, actually, now, 

Imgur


GAN.py - Generative Adversarial Network

  • data : MNIST
  • generator : 128 -> 256 -> 784=28*28
  • discriminator : 784 -> 256 -> 1
  • activation function : softplus, sigmoid
  • optimizier : Adam + min-batch Imgur

DCGAN.py - Deep Convolutional Generative Adversarial Network

  • data : MNIST
  • generator : 128 -> 7764 -> 141432 -> 28281
  • discriminator : 28281 -> 141432(strides=2) -> 7764(strides=2) -> 1
  • activation function : relu, tanh, sigmoid
  • optimizier : Adam + min-batch Imgur

TODO ----------------------------------------------------------------

WGAN.py - Wasserstein Generative Adversarial Network


Conditional GAN


Transfer Learning

inception model

Matrix Factorization

Highway Network

Attention-based Model

Reinforcement Learning


  • additional : L2 regularization
  • additional : Xavier initialization