AudioSculptor/
├── core/
│ ├── analyzer.py # Loristrck analysis wrapper
│ ├── processor.py # Numpy-based transformations
│ ├── synthesizer.py # Resynthesis engine
│ └── utilities.py # File I/O, format conversion
├── gui/
│ ├── main_window.py # Primary interface
│ ├── canvas.py # Visualization system
│ ├── partial_editor.py # Partial manipulation UI
│ └── widgets.py # Custom controls
└── presets/ # Transformation templates
import loristrck as lt
import numpy as np
class SpectralAnalyzer:
def __init__(self):
self.partials = None
self.sr = 44100
def analyze_file(self, path, **params):
"""Main analysis entry point"""
self.sr, sig = lt.sndread(path)
self.analyze_signal(sig, **params)
def analyze_signal(self, sig, win_size=4096, hop=512,
threshold=-90, min_dur=0.02):
"""Perform partial tracking analysis"""
self.partials = lt.analyze(sig, self.sr,
resolution=win_size,
hopsize=hop,
threshold=threshold,
minduration=min_dur)
def get_analysis_data(self):
"""Return structured numpy array of partials"""
return np.array(self.partials,
dtype=[('time', 'f4'),
('freq', 'f4'),
('amp', 'f4'),
('phase', 'f4')])
class PartialProcessor:
def __init__(self, partials):
self.partials = partials.copy()
def apply_transformation(self, func):
"""Apply numpy-based transformation function"""
# Func signature: (times, freqs, amps, phases) -> modified
fields = ['time', 'freq', 'amp', 'phase']
t, f, a, p = [self.partials[field] for field in fields]
new_f, new_a, new_p = func(t, f, a, p)
self.partials['freq'] = new_f
self.partials['amp'] = new_a
self.partials['phase'] = new_p
def time_stretch(self, factor):
self.partials['time'] *= factor
def frequency_shift(self, shift_fn):
"""shift_fn can be constant value or function(freq)->new_freq"""
if callable(shift_fn):
self.partials['freq'] = np.vectorize(shift_fn)(self.partials['freq'])
else:
self.partials['freq'] += shift_fn
# Add more transformation methods as needed
from PyQt5.QtCore import *
from PyQt5.QtWidgets import *
from matplotlib.backends.backend_qt5agg import FigureCanvas
class MainWindow(QMainWindow):
def __init__(self):
super().__init__()
# Central widget with horizontal layout
central = QWidget()
self.setCentralWidget(central)
layout = QHBoxLayout(central)
# Left panel: Analysis parameters and controls
control_panel = QWidget()
control_layout = QVBoxLayout(control_panel)
# File loading section
self.file_selector = QLineEdit()
self.browse_btn = QPushButton("Browse...")
# Analysis parameters
self.win_size = QSpinBox()
self.hop_size = QSpinBox()
self.threshold = QDoubleSpinBox()
# Visualization controls
self.waveform_btn = QRadioButton("Waveform")
self.spectrogram_btn = QRadioButton("Spectrogram")
self.partials_btn = QRadioButton("Partials")
# Right panel: Visualization canvas
self.canvas = FigureCanvas(Figure(figsize=(10, 6)))
layout.addWidget(control_panel, 1)
layout.addWidget(self.canvas, 3)
# Connect signals
self.browse_btn.clicked.connect(self.load_audio)
self.win_size.valueChanged.connect(self.update_analysis)
def load_audio(self):
path, _ = QFileDialog.getOpenFileName()
self.file_selector.setText(path)
self.analyzer.analyze_file(path)
self.update_visualization()
def update_analysis(self):
# Re-run analysis with new parameters
pass
def update_visualization(self):
# Update canvas based on selected view mode
pass
import sounddevice as sd
class RealTimeSynthesizer:
def __init__(self, partials, sr=44100):
self.partials = partials
self.sr = sr
self.stream = None
def start_playback(self):
"""Stream synthesized audio in real-time"""
def callback(outdata, frames, time, status):
# Resynthesis happens here
synth_sig = lt.synthesize(self.partials, self.sr)
outdata[:] = synth_sig.reshape(-1, 1)
self.stream = sd.OutputStream(
samplerate=self.sr,
channels=1,
callback=callback
)
self.stream.start()
def stop_playback(self):
if self.stream:
self.stream.stop()
-
Partial Data Handling
- Store partials as structured numpy arrays for efficient manipulation
- Implement partial selection/grouping using boolean masks
- Use numba for performance-critical numpy operations
-
Interactive Visualization
- Matplotlib with QT aggregation for fast updates
- Implement click-and-drag partial manipulation
- Shared time axis across all views with synchronized zoom/scroll
-
Custom Rule System
- Create a Python code editor widget with syntax highlighting
- Use AST parsing for safe evaluation of user-defined functions
- Provide template transformations as starting points
-
Musical Scaling System
- Implement scale database using music21 or custom definitions
- Create frequency mapping functions for common temperaments
- Add MIDI note number ↔ frequency conversion utilities
- Implement partial data caching for fast parameter tweaking
- Use Dask for out-of-core processing of large audio files
- Employ GPU acceleration for complex numpy operations using CuPy
- Implement level-of-detail rendering for visualization (decimate data at high zoom levels)
def snap_to_scale(scale_degrees, base_freq=440):
"""Create a frequency snapping function for a musical scale"""
scale_freqs = [base_freq * 2**(d/12) for d in scale_degrees]
def _snapper(freq):
nearest = min(scale_freqs, key=lambda x: abs(x - freq))
return nearest
return _snapper
# Usage in processor:
scale = [0, 2, 4, 7, 9] # Major pentatonic intervals
processor.frequency_shift(snap_to_scale(scale))