-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathEIR-TM-HL-261.txt
945 lines (666 loc) · 15.6 KB
/
EIR-TM-HL-261.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
— r—' Technische Mitteilung TM-HL-261
Abteilung: HL Bearbeiter: Prof., M, Taube Visum: o
Betrift: Very high breeding ratio in the molten Datum: 28,7,75
chloride fast power reactor with external 58 e
cooling. ~ Seiten
Zeichnungen
Introduction
In the recent time the discussion about the breeding efficiency of
fast breeders is dealing with the difficulties of obtaining a reaso-
nable doubling time for nuclear power.
In this paper the search for a significant improvement of both of
these parameters, and therefore of the doubling time, is aimed to a
design of a molten chloride fast breeder reactor, with as good
as possible doubling time characteristics.
This can be achieved by rather trivial improvements. But here it
must be stressed that most of these improvements can be realised
only in a fast reactor with liquid fuel and especially in molten
plutonium chlorides.
1) The breeding gain 1s very sensitive to the hardness of the
neutron spectrum in the core. Because in the molten fuel reactor
it is possible to use fissile material also with elimination of
fertile haterial, the spectrum can be rather hard.
Abteilung | Name Expl. | Abteilung | Name Expl.
GL Direktion. . 5 PH S. Padiyathn 1
Dr. W. Seifritz 1 J. Stepanek 1
HL [Dr. J. Peter 1l | ST |Dr. G. Sarlos 1
alle Gruppenleiter je 1 D. Haschke 1
Dr. M. Furrer 1 S. Kypreos 1
IN E.HMo;er 1 DO Bibliothek 3
.H. Bucher 1 Reserve 15
ME |G. Ullrich 1
PH |Dr. J. Brunner 1
J. Ligou 1
E. Ottewitte 1
- Dieses Dokument ist Eigentum des Eidg. Institutes flr Reaktorforschung -
TM-HL=-261
page 2
The impact of elimination of tne fertile nuclide from the core
e.g. on the Doppler-effect will be discussed later.
2. Because of hard spectrum the bonus of fast fission in fertile
nuclides is high, wnich improves the breeding gain.
3. The elimination of structural material from the core in case
of out-of-core cooling improves the neutron balance,
L, Decrease of the fission products concentration because of
continous reprocessing, improves the neutron balance,
5. Doubling time, more than breeding gain characterises the effi=-
ciency of breeding process or for linear increasing power system
the conservation coefficient which equals
. . P S
Gain x (Specific Power)
The specific power in a liquid fuel reactor can be achieved on a
level lower than 1 kg Pu tot/MWther, for the whole system:
core + external heat exchanger + reprocessing plant.
This preliminary report gives some selected datas about such a type
of power reactor.
This datas are calculated on the following basis:
- ANISN reactor code
- 23 neutron groups taken from GGC-3
condensed from ENDF/B III
- 7 zones with 110 intervals
- fourth order of quadrature, Sq
- anisotropy by first order Legendre expansion, P1
- 1instead of F.,P, cross sections, here the datas for Cs-133,
have been used.
The reference reactor:
TM=-HL-261
page 3
core
The reference reactor is characterised on (see fig., 1) fig. 2.
Short description of his properties:
Total thermal power:
Central zone:
Wall:
Fuel 2zone:
Wall:
External zone:
Reflector:
(see table 1)
6000 MWth
Molten chlorides of uranium-238 diluted by
sodium chloride as internal breeding zone.
Also some amounts of Pu-239 from the breeding
process are here present.
Small amounts of fission products are present
Radius of this zone 110 cm
Material: iron with layer of molybdenum
Width: 3 cm
Molten chlorides of plutonium
Pu-composition: 0,7 Pu-239, 0,2 Pu-240
0,1 Pu-241 diluted by sodium chloride.
Significant amounts of uranium-238 (as chlori-
des) are present for achieving an internal.
breeding ratio of 0.22
Width of zone 18 cm
Specific power ~1 KW/cm3
Flux total nal°1016h cmnzs-l
Material: iron/molybdenum
Width 3 cm
The same as central breeding zone
Width in all cases 100 cm
Material: diron only
Width in all cases 40 cm
TM=-HL=-261
275,9
page U
Table 1 CORE 200/C
Thermal power 6 GWth
Breeding ratio 1,75
Specific power in fuel 1,1 KW/cm3
Radius Width | Composition Flux Specific
cm of Zone o4 3 thermal power
zone atoms/10° cm total KW/cm3
Breeding temperature
cm ratio
0 I U-238 6,4.107°
Pu-239 6,0-107° 1,05-101% T 700%¢C
Central g -5 2 . inlet
110,0 breeding F.P,. 2,0+10 3,7+10
zone . o
Na 3.4 1,0“3 T ut1et 800 C
C1 2,27+10 0,490
110,0 -
II Fe 7.107° ,15010%° 0
o 7 ~8507C
5 Wall Mo 1-10 9+10
3,0
113,0 =
III Pu-239 1,410
Pu-240 4,2-10'“ | 1,1,KW/cm3
17,9 Fuel Pu-241 2,1.10°1 1,02°10%% o, 750°¢C
zone -3 7 inlet
U-238 4,2°+10 6,610
“ -5 O
F.P. 2,0 10__3 T utlet 1050°C
Na 3,10 0,22
Cl 2,6°10°°
130,9 =~
IV Fe 7,0°107% 8,24-10%° 8500
=3 g ~950 ¢
3,0 Wall Mo 1,0-10 2,5°10
135,59
v o)
T. 700°C
External the same as 3,9'101u AL EE 5
100,0 breeding central breeding 1,9'109 Toutlet 800°C
zone zone I
1,040
233,9
VI
-2 . I
uo Reflec- Fe 8’0 10 5)2'10u
tor 510
TM-HL=-261
page 5
Fig. 1 Peculiarity of the Reference Reactor Uesign
"Classical" fast breeder reactor with external
blanket only
fuel zone (core)
external blanket zone
This reference reactor Blanket-Core-Blanket
internal blanket zone
fuel zone
external blanket zone
for impact of internal breeding zone (see also DUCAT, MIT, 1974)
TM~HL=-261
page 6
Fig. ¢ Power Reactor ¢ GWth
AN 777
f /R
o \ ‘B
FeMo | \ /Heafaxchh/ er
1 U
T AN
= 117
11 . ] / /
1 V1V
internal ' external / / g
Fm'@r#/blanket 1 V1V
Reflectgr ? ? ?
| / / , 11 1
il /e 1 Vb
4 I 7 I V4
/ 1 W
0
1 U U
d
¢/
777
TM=-HL=261
page 7
Fig. 3 Neutron Flux in Reference Reactor
Total neutron flux \
1010-,,a,———”""’ ‘I
N \
\ \
\
.
) \ \
1047 \!
. N
Fast neupper” flux N :
(~370 keV) |
\ \
104+ |
\
Neutropns : \
(—= ) \ \
cm< sep : N
I
1013- : :
. .
'\
\ \
\ \
\ :
1012 - |
Internal Blanket E ;
\ \
i |
101t \ N
:' ue
Zoney
A A
..
10 ) !
10%0_ E Ell
\ :External Blanket |
: : Reflectdgr
§ \
\
9 \ \
" | \
L™ - Thermal neutrons s B
\ N
~~ flux -
. \ \
10% _ \ :
'\
\
!
; N
AN
10 T T T T | A~ 4 T T L} 1 L L]
0 20 40 60 80 10* 140 160 180 200 260
RADIUS / CM
Fig, 3
internal
breedin
zone
1,2
0,9 —
WA ISS
£
ud
Total Flux in the Fuel Zone
Fuel
mean
TM-HL=-261
page 0O
pl
=
0/
—
YIS
o
external
breeding
zone
TM=-HL-261
page 9
The neutron flux in the reference reactor is shown in fig. 3, 3'
and 4.
The thermal flux in all three zones, external breeding zone, fuel
and external breeding zone is only 10-8 of the total flux and only
in external blanket zone arrives 10-6.
The total flux is relatively smoth distributed and also in the fuel
zone the maximum to the mean value of the flux achieves approx
1,13 (fig. 3').
The neutron_flux is rather hard and the median energy of neutrons
(here estimated as that to the left and to the right of this value
the number of fission is equal) is approximately ~370 KeV (see fig. 4).
In a typical liquid metal fast breeder and in gas cooled fast breeder
this value equals: 120 KeV and 176 KeV respectively.
As a good illustration of the impact of the most important parameters
on the value of breeding ratio a simplified calculation is given
on the table 2., The discrepancy between this calculations and
the computer output is of 8%.
10
10
10
10
- Spectrum in Fuel Zone
|
TM=HL=-261
page 10
Median
Energy
| 1 3 1
: T
10° 10°
Neutron Energy / eV
10
TM-HL=-261
page
Tabelle 2 Simplified calculation of breeding ratio
and neutron balance
Median energy (10/11 group)
Pu-238 of
(from computer output) ogc
v
a
n-1
§: fertile/fissile fission
!
Bonus (v -1)8
1+a
Total positive
Losses
¥p, Cl, Na,
Mo, Fe
Leakage (arbitr,)
Losses + o
1+
Calculated BR
Computed BR
370 KeV
1.83 barn
0.180
~2:.95
0.0984
1.6857
0.37
0.539
2.225
0.160
0.10
0.3%2
1.890
1.752
2
TM=-HL=261
page 12
Impact of the plutonium contents in the fuel
One of the most important problems in achieving a high breeding
ratio seems to be the hardness of the neutron flux, this is strongly
influenced by the composition of the fuel,
In this case the fuel has been postulated to be a mixture of
a PuCl, * b NaCl » ¢ UC1
5 3
a = 0,1 - 0,2 b =0,7 - 0,8 c = 0,1 - 0,2
Unfortunately not all datas for this system are available (fig. 5).
The rough calculation of the changing concentration of PuCl3 in the
melt with NaCl (fig. 6) shows a rather sharp decrease of breeding
gain BG for decreasing plutonium concentration, especially when the
plutonium molar ratio to the sodium is lower than 0,25.
In spite of these uncertainties of the P‘uClB-NaCl—UCl3 system here
has been calculated the impact of uranium-238 in the fuel., For a
constant PuCl3 concentration, with simplified correction of NaCl
concentration, the results are given on the fig. 7.
For the increasing ratio of uranium to plutonium in fuel from 0 to 3
the total breeding gain increases from 0,65 to 0,95. It is a rather
clear situation; and therefore the reference reactor includes uranium
in fuel 1n a ratio of 2:1 to the plutonium.
PuCl
TM=-HL=-261
page 13
Fig, 5 The System PuClB-NaC1-UC13
800 800
50
NaCl
4o
PuCl UcCl
whts 3
.800/
Usl
UCl
TM-HL-261
Fig. 6 Plutonium Concentration page 14
800 =
TEO =
Tempe1
o
(7C)
600 =
500 -
400 T T T T R T
0.3 0.,20.1 0.0
Mol ratio of plutonium
\ .
006 - p-l.5
1.4
-103
05 o
142 gpeciric
Breeding 1.1 bover
gain T (KW/em”)
0.4 — -1.0
0.9
~0,8
0.3 =
0.7
~0.6
0.2 0.5
TM—HL—261
page 15
Fig., 7 Impact of U-238 Concentration in the Fuel
Pu-Concentration: 0.0021-10214 atom/cm3
0.6
| . ; | | 1
O
—
o
3 U/Pu ratio
_
p—
=——
==
=
3
0 ! 2 jT 4 ;
oN
24
Atom U in fuel / (0.001.10%"/cmo)
0.9
0.7
0.6
0.5
with U
TM=-HL=261
page 16
Impact of Uranium Concentration in the Fuel
Uranium
Concentration
&6.3:10°
4,2410°
Q
o)
-
(¢4]
no
(]
(@]
~
N
=
r3,15'1o3
®2,1°107°
without U
Central Blanket
110 cm
TM=-HL=-261
page 17
Problem of geometry:
Central breeding zone versus central fuel zone
The reference reactor 1is a rather nonconventional one because of
three zones structure:
- internal blanket zone
- fuel zone
- external blanket zone
This type of reactor has been checked with the conventional type
(table 2). For all other more or less constant parameters, inclusive
total power, the obtained results for breeding gain are equal. But
the difference is to see in the specific power changes more than one
order of magnitude, being higher in the '"conventional" central fuel
zone reactor. It is trivial that also the mean neutron flux increases
from 1,2+10%% om %5~
17
for nonconventional central blanket zone to
approx 2+107'n cm_25-1 for the conventional central fuel zone.
Because the specific power and intensity of neutron flux is
doubtless a very serious problem from point of view of ingeneering
design of the reactor (cooling, radiation damage of structural
material and fuel) the both systems that is without internal
blanket zone and with radius up to 110 cm have been calculated,
The results are giVen on fig. 8 for fuel without uranium and with
uranium in fuel for both extrem cases; no internal blanket zone and
by internal blanket zone.
Table 2
6 GWth "Chlorophil"
TM-HL=-261
page 18
Fuel in central zone versus fuel in middle zone
Core ]conventional nonconventional
number of case) _____________ o-of180) oo f200) L
Geometry Central Fuel Blanket 110 cm
Middle ———- Fuel ~18 cm
Quter Blanket >100 cm Blanket 100 em
Pu/FP 2,1-107°/2.107° | 2,1-107%/2-107°
Spec. power KW/cm~ | %17,7 1,41
Power in fuel % 190,9 % 76,2 %
n . i . 17 . 16
Flux total 1left ) boundary §2‘OU 1017 1,2 1016
in fuel right) 11,15410 1,08+10
Flux in left ) '8,99.101° 9,7+10%
) | boundary @ _
outer ; t « gD | 14
blanket right) %2,16 10 2,510
Breeding gain ? 0,63 0,70
Median energy (group) é9 1/2 10
TM=HL=261
page 19
Fig, 9 Impact of Internal Radius
(No U in Fuel)
0,9 =
Breediing
gain|total
0.8 -
Core ®
0.7 _ | 133 Core —0
Breeding Gain
-1}
Core 20C
| i I ! I I ' | v L i
0 10 20 50 40 50 60 70 80 90 100 110
Internal Blanket cm
TM=-HL=261
page 20
On the fig. 9 and 10 are given some results of different radii
of the central breeding zone.,
Als
breeding
on
From all
o the simplified calculation of internal zone breeding ratio,
table 3.
increase of the internal breeding zone from zero up to 110 cm
ratio in fuel and external zone breeding ratio is shown
these datas the following conclusions can be obtained:
increases the breeding gain for given type of fuel, wall and
fertile material only unsignificant, less than 10% relative,
the specific power increases dramatically and makes the solution
of in the design very difficult.
the increase of U/Pu ratio from 2 up to 3,6 does not influence
the total breeding gain (see fig. 10).
Table 3 (in arbitrary units)
Internal zone Fuel OQuter zone
- . « - -24 -z .
Case Pu-239 UflS Ucap Pu 239f Pu-2 lf Pu 239f Ufls Ucap Total
number Bree-
oXV oXV OXV oXV OXV oXxV ding
Ratio
*
) 0,14 0,308 0,8 3,05 0,351 0,30 0,47 1,83
200 1,70
**) )
3,63 0,367 0,04 o,46 2,50
180 1,63
*)
**)
nonconventional
conventional
TM=HL=261
page 21
i
Fig, 10 Breeding Ratio Versus Radius of
Internal Fertile Zone
ing
Neutron
flux
1016n cm
| \ Specific
\\power
i |
50 100
Radius of internal breeding zone, cm
TM=-HL-261
page 22
Fig., 11 Impact of Fission Products Concentration
in Fuel
(very simplified, from different calculations)
O 7 =
Breefling
gain - 4
0.6 specific
BG power
(KW/cmB)
=3
0 o 5y
-
0.4 _ spec. wower
dwelling time of fuel in core (days) i
o.’B‘J
T~2 *~10 1*20
| T "
107 10"
. 24, 3
Concentration of F.P, atoms « 10" /cm
TM=-HL=261
page 23
Impact of reflector
The impact of the 40 cm with reflector, when changing from iron
to lead is rather unsignificant as is to see from table 4,
Impact of F.P., concentration
This parameter play a very important role. For given reactor design
and given fuel and fertile composition the increase the concentration
of F.P. (here simulated by Cs=133 only) from 2°10—5 to 2'10-u(in
102u/cm3)decrease the breeding gain from 0,65 up to 0,38, when
specific power decreases less than twice,
In steady state reactor a cbncentration of 2'10”5
lOeu/cm5
for a specific power of 2 KW/cm
atoms F,P.
for a fuel with 2,1"10'-3 atoms Pu~102u/cm3 is to achieve
5 after a time period of
ye10~De1nt
t = 2%0 19 10 e 1561°105 sec
2+107+3,1°107 "2
that is after 1,87 days. The higher value of F.P. concentration
that 1is 2«10-4 corresponds to 18,7 days of mean dwelling time
of fuel 1in reactor.
page 24
Table N Central fuel (Core 18")
e . F N .
(wall 2,5 emy Pu = 2,1°10 at./'lo84 em”)
Case A B C
U in fuel no yes no
4,210 °
Reflector 40 cm Fe Fe Pb
& 5 3 # ¢ 3 1 I'a)
Volume fuel «107cm 2,95 2,40 2,97
A power in fuel % 90,6 92,1 90,8
spec. power in fuel
KW/cm? 18,4 23,0 18,3
BR tot 1,64 1,94 1,66
Flux total
right bound zone 3 1,18'1017 1,25-1017 1,187°1O17
TM~-HL=-261
page 25
Impact of chlor-37 separation a separated chlorine C1-37 which has
much lower absorption cross section than Cl-35, The impact of each
adsorber on the breeding ratio is given by:
15 A+D+L+a
1l+a
AB = decrement'of breeding ratio
A = absorption Qate in given absorber
D = absorption fate in rest of absorbers
L = leakage
o = ogc/of
Because in typical case for strong absorber in hard spectrum fast
core
A (D+L) %2 a = 0,15
The relativ impact on the rather high breeding ratio of B = 1,0
results in a case when the "profit" of the separation factor will
be e.g. 0,9 A, than
0,90,15
1,15
AB 0,12
and in relation to breeding gain
0,12
26 = FEEE = 0,20
T, G |
doubling time T = = 0,83
2 G+AG
TM-HL=-261
page 26
Acknowledgment
A1l the results have been achieved in close cooperation with
J. Ligou. The best thanks for the help of k. Ottewitte (nuclear
datas and ANISN-=code management) and S. Padiyath for computer
technique help.
Literature
M. Taube, J., Ligou EIR-Report 215, June 1972
J. Ligou EIR-Report 229, November 1972
M. Taube, J. Ligou Ann. Hucl., Sci, Eng. 1, 227 (1974)
G.,A., Ducat, M.J. Driscoll,
N.E. Todreas MITNE-157 (1974)