-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathORNL-1567.txt
1590 lines (811 loc) · 28.4 KB
/
ORNL-1567.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
CENTRAL RESTARCH LIBF
| CoERERT _ DOCUMENT COLLECTION
SECHRIVANFORMATIUR
D),
ORNL 1567
Reactors-Research and Power
T
3 445k 0349493 9 ok
HEAVY ISOTOPE BUILD-UP IN CORE
233
OF U BREEDER
J. Halperin and R. W. Stoughton
CENTRAL RESEARCH LIBRARY
DOCUMENT COLLECTION
LIBRARY LOAN COPY
DO NOT TRANSFER TO ANOTHER PERSON
If you wish someone else to see this document,
send in name with document and the library will
arrange a loan.
OAK RIDGE NATIONAL LABORATORY
OPERATED BY
CARBIDE AND CARBON CHEMICALS COMPANY
A DIVISION OF UNION CARBIDE AND CARBON CORPORATION
POST OFFICE BOX P
OAK RIDGE. TENNESSEE
This document consists of 26 pages
® Copy ?‘ of 176 coples Series A
Contract No W-T405-eng-26
CHEMISTRY DIVISION
HEAVY ISOTOFE BUILD-UP IN CORE OF U233 BREEDER
J Halperin and R W Stoughton
DATE ISSUED
0CT 6 1953
swrrmcnnsrs DEGLASSIFIED
By AUTHORITA%%Q_ mé il & :zt~ - .
VLY
OAK RIDGE NETIONAL LABORATORY TR tamx mm
Operated by
CARBIDE AND CARBON CHEMICALS COMPANY
A Divasion of Union Carbide and Carbon Corporation
Post Office Box P
Ogk Ridge, Tennessee
-
II/IIIIIIIIl/l/lll/II//IIIIII/ININIIIUINIU/IW
3 Y45L 0349493 g
el .
INTERNAL DISTRIBUTION
|
1 E Center 33 M T ;
2 PYAlogy Library 3+ ¢ H Yett
3 HeWgh Physics Library 3% K Z brgan
4-5 Cen\@l Research Library 36 T incoln
6 Reac Experimental 37 A Householder
Engin¥gking Library 38 ZS Harrill
T-11 Labora®@y Records Dept 39, E Winters
12 LaboratOg Records, ORNL R C D W Cardwell
13 C E 1la g E M King
1k W Hume S K-25 ) D D Cowen
15 L B Emlet 12) D S Billington
" 16 A M Weinber} Ly R A Charpie
17 E H Taylor ks J A Lane
18 E D Shipley 46 M C Edlund
19-23 S C Lind 47 R B Briggs
eh F C Vonderlage 48 K A Kraue
25 C P Keim L9 W C Waggener
26 J H Frye, Jr 50 C H Secoy
27 R S Livingston 51 D E Ferguson
28 R C Briant 52 F R Bruce
29 J A Swartout 53 H E Goeller
30 F L Culler 54 J H.lperim
31 A H Snell 5-56 R W Stoughton
32 A Hollaender
EXTEMNAL, DISTRIBUTTIONE
o7 AF Plant Rejfesentative, Burba
58 AF Plant Rffresentative, Seattle
59 AF Plant JEpresentative, Wbod-Ridg;l
60 ANP Projdlt Office, Forth Worth
61-72 Argonne »tional Laboratory (1 copy &
and L J¥ Katzin)
73 Armed gorces Special Weapons Project (%@
T4-78 Atomiff Energy Commission, Washington
Battgfle Memorial Institute
Becj@el Corporation |
81-84 Brglfkhaven National Laboratory (1 copy to W
Byeau of Ships
(i ifornia Research and Development Company _
arbide and Carbon Chemicals Company (Y-12 Pl )
Chicago Patent Group ,
Chief of Naval Research
Commonwealth Edison Company
Department of the Navy - 0p-362
3 Detr01t Edison Company
X
\ toW M Manning
1dla)
T Miles)
-
99 ER
18
104
105-107
108-111
112
113-119
120
121-125
126-127
128
129
130
131
132
133
134-135
136-137
138
139
140
14
142
143
4L
145
146
147
148-151
152-15
61
P2-176
iii
duPont Company, Augusta
duPont Company, Wilmington
pster Wheeler Corporation
-rol Electric Company (ANPP)
Gen@el Electric Company, Richland
Hanf @l Operations Office
Idsho Sgmrations Office
Iowa StaW College
Knolls AtOglAc Power Laboratory
Los Alamos T@ientific Labora
Massachusettnstitute of Pfhnology (Kaufmann)
Monsanto Chemi®@l Company
Mound Laboratory
National Advisory<@gmm e for Aeronautics, Cleveland
National Advisory C@mjfee for Aeronautics, Washington
Naval Research LaborZ®
New York Operations gWEce
North American Avigion;@anc
Nuclear Developmejlf Associgabes, Inc
Patent Branch, nington 4B
Pioneer Servicgll: Engineerirg@Company
Powerplant Lajfatory (WADC) g
Pratt and Wifney Aircraft Divii@on (Fox ProJject)
Rand Corpg ion L
San FrangFco Operations Office
Savanngl@River Operations Office, ANgsta
USAF J@Bdquarters u
U Javal Radiological Defense Laborigery
Upffersity of California Radiation Laboi\@ory, Berkeley
copy ea to G T Seaborg and I Perlma¥
Pniversity of California Radiation LaboratOwg
Vitro Corporation of America
Walter Kidde Nuclear Laboratories, Inc
Westinghouse Electric Corporation
Technical Information Service, Osk Rldge
copy to E L Zebroski)
Livermore
iv # 75
o,
Heavy Isotope Burld-Up In Core of U233 Breeder
Je Halperin and R. W. Stoughton
Abstract
The build-up of uramium i1sotopes with time in a U233 breeder core
was calculated for five different cases, the difference depending on the
startang fuel and the 1sotopic composition of the continuously added
make-up fuele The total uranium concentration was found to approach
slowly an equilibrium value of 2.6 to 3.5 times the starting value,
depending on the composition of the make-up fuel. In all cases the net
neutron losses per net neutron reproduced in the core go through a
maximum of less than 1% at a flux-tame of about 3 x 1021, go through a
mimmm of about -~0,6% (1.€. a net gain) at about a flux-time of
L x 1022 s and approach equilibrium values of about 0.3% at flux-times
above 6 x 1023.
sy
k : Y
o ] =
The principle heavy i1sotopes in the core of a U233 breeder reactor and their
modes of formataion may be depicted by the following diagrame
ye33 &Efllfil; ye3b .£§£E1> 235 _iEzlE)> U236 .LE;I1> 237
(n, fiss,) (n, fiss,) P- 16,7 day
The production of these species as well as of several other heavy muclides i1n
the core of a breeder starting with pure U233 has been discussed by'vlsner(l)
(1) 8 Vaisner, ORNL-CE No. 51-10-110 (0Oct. 1951).
and by Halperin and Stoughton(la)o Both the growth of the various isotopes and
(la) J. Halperin and R W, Stoughton, ORNL-1368 (Sept. 1952),
the net effect on neutron economy were presented 1In this paper five cases will
be considered with more recent values for the various cross-sections
I Pure U233 in core at start, pure U233 added to core,
ITo Pure U%33 in core at start, y233 containing 5% 23l added to core as
the fuel 1s consumed,
ITI. U233 containing 5% U23h in core at start and added to core.
IVe Pure U235 in core at start, pure U233 added to core.
Ve Pure U235 in core at start, ye33 containing 5% p23l added to core,
In any practical case the core will probably start with U235 *. As this
material 1s consumed U235 will be added at first, and then very soon the added
material should consist of the U233 product produced in the blanket. Some U23h
will be produced in the blanket by neutron capture of the members of the 233
O
¥ Actually this starting material will contain about 1,0% U23h, 93¢ 235 and 6%
U238° The U23h and U238 wLll increase the losses over those calculated in this
paper for Cases IV and V at the shorter times, the magnitude of this additional
loss will be about 0,174 at zero time and 1t will steadily decrease with
increasing time.
o'
-2 -
chain (Th233, Pa233 and U233) and 1t 15 felt that an upper limit on the U23h/U233
ratio for the blanket product will be about 0.05 1f the overall losses are to
be kept wathin reason. Hence any practical case 1s expected to lie somewhere
in between Cases IV and V Cases I, IT and ITI are included for comparison and
because some future reactors may actually start with U233 1n the core The
effect of U237 wall not be considered because 1t 18 expected to be destroyed
predominantly by beta decay and 1ts cross-sections are not known, Its concen-
trations and possible effects have been considered in a previous paper(l)
For Case I the concentration of U233 1s considered constant. Actually its
concentration will increase somewhat as various pile poisons (e.ge fission products,
U23h etc.) grow 1n and 1ts concentration may then decrease somewhat in the core
as 1t increases in the blanket. If the core and blanket are processed
contimiously, however, these effects will reach a steady state value rather soon,
if they are processed batchwise, then the tame average value will be constant
from period to period. The effect of the heavy i1sotope build-up 1tself on
required U233 concentration changes 1s small as will be seen from the small effect
of this build-up on neutron economy,
The values of the various cross-sections used here are gaven in Table 1.
Table 1,
Thermal Cross-Sections and Eta Values
Nuclade 6 ca
y?33 50 56l
g2 90 90
y235 106 682
7236 8 8
Mo = 2,12 Moj = 2.30
-3 -
Case I+ Pure U233 In Core at Start, Pure U233 added.
The differential equations for the three changing species are
an
_£E= Np3E §o(23) = Ny f S(2h) (1)
dN
"&’ii N f O, (2h) = Nyef G, (25) (2)
aw
_fii Npef O(25) = Nogf Go(26) (3)
Here the N's indicate concentrations, G, and O ; indicate cross-sections for
neutron capture and absorption (1.e. capture plus fission) respectively, and the
two-figure index numbers indicate the last figure of the atomic number and last
figure of the atomic mass respectively for the nuclide in question, The relataive
concentrations of the heavy i1sotopes at equilibrium are obtained by equating the
differential equations to zero, thus
N2y, 60(23) 50
—_—= = = 00556
Npg G, (2L) 90
N25 60(23) 50
N_2; = m = 587 = 0,073
Nog 0.(25) 0c(23) 106 x50 4 om
Nog T C,(26) 0, (25) =8 x 682 ~
1,600
1
Adding umity for the U233 1tself, the ratio of total uramum to U233 at equilibrium
becomes 2,60,
Integrating Equations (1), (2) and (3) the time dependent isotopic ratios
become
N -0 . (2L)ft
—g-li.: a(l-e c(2h) ) (L)
-1 -
23
where a) - O-\_C(._l = 0,555 555 555 6
S e(2h)
Nos . _GL(2L)ft -G
N_z.; = ag * bge c(2L)ft ce a(25)ft (5)
wh . 0c(23) _
ere ag ) T 0o 782 99
b - 0c(®) - -0.08L L59 L59 L6
03(25) - Gc(zh)
g = O(23) 0o (2h) = 0,011 145 676 L6
G (25)[C,(25) - & (2]
N
N_z_g . bée_G‘c(zh)ft+ g a(25)ft | dée..@c(26)ft (6)
where a; = 0\6(‘___‘2’235) = 06971 LOT7 62k 6
C
bg = "5 Oc(25) _ 0,109 179 30L 2
G ,(2h) =~ C°-(26)
cg = 25 %(%) - -0,00L 752 880 868
63(25) - 63(26)
d6 = -(a.6 + bg + cg) = ~1.078 83L OLL 9
The net neutron loss per fuel atom destroyed in the core is then
Mol Oo(®) | 0 gy M25 Tal25) | Wag Tc(26)
L(23), =
The net loss per net neutron reproduced in the core 1s
1(23)o/(MN23 = 1)
where ‘Q 23 18 the neutrons produced per neutron absorbed by U233. The subscript
zero indicates no 1}23)'t in the U233 added to the core,
Case II Pure U233 In Core at Start, U233 Containing 5% U23h Added.
The contribution to each 1isotope (U23h, U235 and U236) 1s divaded into two
=5 -
parts (1) that resulting from the U233 originally present and the y233 added
to the core, N;, and (2) that resulting from the y23h added wath the 0233, the
N: contribution, The first part Nl in each case 1s Just that calculated in
gase Io The second part in each case N: 1s proportional to Ni. Thais can easily
be seen as follows,
Remembering that U233 (from the blanket) 1s added at the same rate that it
is destroyed in the core
-EE- = production = destruction
Li§
= riN,3f G,(23) - Ny £ O (2h)
where r = N2h/N23 ratio in the blanket product, this product
1s added to the core as needede.
Thus this equation 1s simlar to Equation (1) except that 6‘&(23) an Equation (1)
1s here replaced by rG,(23)s The solutaon then is
By TOLCY O, T Ny,
— T cmmmm——icusms - e £ ———— —
Npq Gc(fll) 0.(23) Noj
The total U23h 1s given by
Nay Nl Np) [1 rG‘a(ZB)] N,
8
N3 Nz3 N3 Se(23) | Wa3 ®)
where Néh/NZB in Case II 1s equal to Nzh/N23 calculated an Gase o
Similarly the total of each of the other 1sotopes is given by
r Y
No r&.(23) | N
23 + c No3
N I r6,(23) 1 N
.2,6.. =1 + ___a_'(__.... ..3..6, (10)
N23 I O’(;(23) N23
1
where the primed N2h’ NES and Néé here are equal respectively to N2h’ NZS and Nog
1n Equations (L), (5) and (6).
- 6 -
The net loss per net neutron reproduced in the core becomes
L(23)r r o, (23) L(23)o
={1=+ “ 5
s -1 G, (23) ‘023 -1
where L(23)0 1s given by Equation (7). Thus each 1sotopic ratio and the net loss
(11)
in Case IT 1s equal to [l-r rc‘a(23)/c‘c(23)] times the same quantity for Case I,
The value taken for r is 0,05 (1.e 5%).
CasellI U233 Containing 5% 1123h In Core At Start And Added To Core.
This case will be the same as Case II except for the added contribution to
the U23h, U235 and U236 resulting from the U23h originally present in the core,
This contribution 1s calculated for each i1sotope and added to the results in
Case II.
Lettang Ngh = original concentration of U23h
N'g = concentration of this U23,4 left at any time,
Nap NS
—2h . T2 -G (2b)rt - 6, (2L)5t
= 0,05 e
Np3 N3
Using this equation and solvang equations lake (2) and (3), the U235 and II236
#*
contributions, Nog and N'Eé are obtained
N3 _ oo(2h) N3), (o~ Tel)TE _ -0, (25)1t
No3 (G,(25) = Go(2h) Ny
= 0,00760135 (e~ Oc(2b)ft _ -Ga(25)fty
N§6 O (2h) 5 (25) N, [~ 0 ,(25)ft o= Oc(2h)ft +
No3 (Ca(25) = G, (2L)) Np3 [ O,(25) = O (26) O ,(2k) =G (26)
)
( 1 ] 1 o 0'0(26)ftJ
G,(2h) =G (26) ~ T,(25) -~0,(26)
O, (25)ft
= 050239093 &~ - 0,296523 &~ P2t 4 0172613 o= Oc(26)2t,
-7 -
The total concentrations of each isotope then become respectively,
N N
2 (Bq. (8)) ¢ 22
23 N23
N25 Nfig
N23 (EQO (9)) * N23
N26 N56
o (1 + 35
T, (B (1) 5o
The contribution to the loss term due to the Ni is
L¥*(23) 1 [y, o) N25 Ca(25) | Wpg O(26)
'Q 23 = 1 Y]23 -1 N23 0" (23) n25 O" (23) N23 0-3(23)
and the total loss per net neutron reproduced in the core becomes
L(23) 1*(23)
——x E o ll +»
To5-1 (Eq. (11)) o3~
Case IV Pure U235 In Core At Start, Pure 7233 pdded.
In this case none of the four isotopes has a constant concentration., As
the original 1235 15 consumed U233 is added and a2 relation must be assumed
between these two species, The assumption made here is that 0233 15 added at
such a rate that the net neutrons reproduced in the core fuel i1s kept constant,
le€o m
(Mg = LIN350(25) = (Mog = LNpg03(25) + (Va3 = L)Np30,(23)
N25 (WZB -1) N23 O, (23) N25 N23
= 3
W35 (Mgs - 1) 15 0a(B) W Wi
where k =,Cra(25) (1125 - 1) .
0_3(23) (”23 = 1)
(12)
Here the triple prime indicates any isotope resulting from the original UZBS,
the single prime indicates any isotope growing from the added U233, and Ngs indicates
the original U235 concentration. The restriction between Ngs, Ng; and NéB
-8 =
could just as well have been made on a neutron reproduction basis (1.e. keeping
N;é T[25 0,(25) + Né3fl23 O'a(23) constant), Using such a different basis would
not have sigmificantly altered the net losses due to the heavy 1sotope burld-up
as calculated here except for the different factor in the denominator depending
on the different basis,
The fraction of the original amount of U235 remaining at any time i1s given
by the expression n
N25 - O’a(gg)ft (13)
0
N25
Using Equation (13) and the differential equation
"y
dlNog
dt
ne "
= Nogf O (25) = N, f O(26)
the expression for the U236 resulting from the oraginal U235 becomes
"e
N26 _ 0 ,(25) [e-o'c(zé)ft e o;(zs)ftJ (1L)
N3y O,(25) = O7,(26)
1
The amounts of the various isotopes NEB, N;h, NES and Nog resultang from the
%33 added will now be considered, Combining Equations (12) and (13)
N
23 . (1 - &~ Oal2S)ty 15)
. (Mag - 1) 0(25)
(Mo3 = 1) O3(23)
The differential equations for the other i1sotopes are the same as
where k = 1,041 789 L1
Equations (1), (2) and (3) wath each concentration term being primed, Using
these and Equation (15) and integrating
g%—l-‘r- - a,l[l + o e ~Te)b, o e'o'a(zs)ft] (16)
25
' O‘c(23)
where 3 = 6-0_@5 = 0,578 771 894 5
-9 -
o O - - 1,152 027 027
L= " 25 - o)
o(2h) = 0,152 027 027
O’a(25) - 0"36210 °
11(2,_5 = ag I:l + b; e-O'c(2h)ft + c% e-O";l(25)ft + d; fte O;(25)ftJ (17)
Nog
' 23
where ag = k %g% = 0,076 377 522 63
2
b; = o (0‘3(25)) = = 1327 166 271
(07a(25) = 0%, (2L))?
o _[(0a(25))° )
(07, (25) = O (21))?
4 - Cc()O0%(5) 103,682 132 L barns
0°,(25) = G o(2L)
1| = 0,327 166 271
, ' ? - 25)ft L I
_Ifg_é_ = ag aé + bée-O"c(zh)ft* cée“ O, (25)ft défte Oa(25) + gge o-c(zé)ft} (18)
N25
where a.; 18 given above
ag = %% = 13,250 000 000
by = ~b50(25) = 1,715 605 178
6~ 0 (2h) = O 4(26)
1 1
oy = 225 0cl2) 95 9(2) - - 0,075 616 53k 0
O _(25) - O,(26) (O,(25) - G(26))2
! - 4;0‘;(25) = = 16,306 139 212 6 barns
6~ &7 (25) - O,(26)
gy = = (ag + bg + c6) = - 14,889 958 6Ll 00
The total U233 and 23l are given by Equations (15) and (16), respectively,
The total U235 1s given by the sum of Equations (13) and (17), 1.€e,
N fry Nl
25 _Yag Mg
O o el
Npz N3z Ng
and the total y236 1s given by the sum of Equations (1L) and (18).
o5 _ Mo | Mag
W Nog N3g '
The loss then per net neutron reproduced in the core fuel in Case IV 1is
given by
L(25), _ Np), O%(2k) 1 _ Nag . Nog O(26) 1 } Nog Oo(26) 1
Mos -1 W35 05(25) (Nog -1) N3y N3x T(25) Vipg - 1| W3y O5(25) (Vg -1)
L'(25), 1"'(25),
Nag-1 Mpg -1
Here the single prime indicates contraibution from neutron reactions on the U233
(19)
added, the subscript zero indicates r = o; 1.e. that pure 7233 15 added to the core,
The reason for divading these losses into two components will become apparent in
the dascussion of Case V.
Case V U235 In Core At Start, U233 Containing 5% U23h Added.
Here there are three contributions to some of the 1sotopes (1) that
;' part, (2) that resulting from peutron
resulting from the original U235, the N
reactions on the U233 added, the N. part, and (3) that resultang from the y23l
added with the U233, the N; parte The contributions (1) and (2) have already
been evaluated in Case IVe Item (3) will now be considered and then added to
the other two. For this contribution 1t 15 necessary to know the rate of
addition of U932 and not Just 1ts concentration which 1s fixed by Equation (12),
Using Equation (13) and differentiating Equation (12) gives the net rate of
change of y233
! te
dNo3 dN25 "
e T ETa T st ()
But 0233 is destroyed at the rate of N;3f<3;(23). Hence the total rate of
addition of U233 is
KNpEE O, (25) + Np3f 03(23)
since the net rate of change of U233 = rate of addition - rate of destruction.
The rate of addaition of U23h 1s r times the rate of addition of U233 (where r
1s the U23}"/Uz33 ratio in the blanket product)es Using Equation (12) wath the
above expression for the total rate of adding U233 the rate of addition of
U23’4 becomes
kN3t G (25) = Hp3f(07,(25) - 03(23))
and the net rate of change of this contribution to the total U23h becomes
v,
dt
= r%ugsf C,(25) - NEBf(G‘a(ZS) - o*a(23))] - N;hf 0. (2k) (20)
The first term in the brackets 1s a constant and the second one varies as Né3.
As will be seen, the calculations may be somewhat simplified if Equation (20)
1s broken up into two equations, one involvaing the constant production term and
the other a negative variable "production" term. Let
= (py)g + ()
Noy = Woplg + Wollys