-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathORNL-1933.txt
2035 lines (1053 loc) · 33.1 KB
/
ORNL-1933.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
UNGLASSIFIED — |Ii111NNInNA
3 4456 03L0993 1
ORNL-1933
Engineering
1 * - ‘ ‘¢
LENTE:’._.%L RESEARCH LIBRARY c;
DOCUMENT COLLECTION
APPLICATION OF TEMPERATURE SOLUTIONS
FOR FORCED CONVECTION SYSTEMS
WITH VOLUME HEAT SOURCES TO
GENERAL CONVECTION PROBLEMS
H. F. Poppendiek
L. D. Palmer
CENTRAL RESEARCH LIBRARY
DOCUMENT COLLECTION
LIBRARY LOAN COPY
DO NOT TRANSFER TO ANOTHER PERSON
If you wish someone else to see this document,
send in name with document and the library will
arrange a loan.
OAK RIDGE NATIONAL LABORATORY
OPERATED BY
UNION CARBIDE NUCLEAR COMPANY:
A Division of Union Carbide and Carbon Corporation
POST OFFICE BOX P * OAK RIDGE, TENNESSEE
UNCLASSIFIED
ORNL-1933
UNCLASSIFIED Engineering
Copy No :222
Contract No W-T7405, eng 26
Reactor Experimental Engineering Division
APPLICATION OF TEMPERATURE SOLUTIONS FOR FORCED CONVECTION
SYSTEMS WITH VOLUME HEAT SOURCES TO
GENERAL CONVECTION PROBLEMS
by
H F Poppendiek
I D Palmer
DATE ISSUED
SEP 29 195%
OAK RIDGE NATIONAL IABORATORY
Operated by
UNION CARBIDE NUCLEAR COMPANY
A Division of Union Carbide and Carbon Corporation
Post Office Box P
Oak Ridge, Tennessee
_IIHIWHMI?HIIWIWIIMINllllll?Mll“llfllllfllll —
3 445k 03L0993 1
-2-
INTERNAL DISTRIBUTION
1 C E Center 48-82
2 Biology Library 83
h%% W Health Physics Library 8L
Central Research Library 85
6 Reactor Experaimental 86
Engineering Library 87
7-13 Laboratory Records Department 88
14 Laboratory Records, ORNL R C 89
15 ¢ E Larson 90
16 1L B Emlet (K-25) 91
17 J P Murray (Y-12) 92
18 A M Weinberg 93
19 E H Taylor o4
20 E D Shipley 95
21 C E Winters 96
22 F C Vonderlage o7
23 W H Jordan 98
24k J A Swartout 99
25 8 C Lind 100
26 F L Culler 101
27T A H 5Snell 102
28 A Hollaender 103
29 M T Kelley 104
30 G H Clewett 105
31 K Z Morgan 106
32 T A Lincoln 107
33 A S Householder 108
34 ¢ ¢ Harrill 109
35 D S8 Billington 110
36 D W Cardwell 111
37 E M King 112
383 R N Lyon 113
39 J A Lane 114
o A J Miller 115
41 R B Briggs 116
42 A S Kitzes 117
43 0 Sisman 118
4y R W Stoughton 119
ks W R (Gall 120
46 S8 E Beall 121
Wy J P Gill 122
EXTERNAL DISTRIBUTION
EHQauuuubdEbaptraEdQE2QanEsnEarradnaaanbd@mEEATQRX IO
ZauUurRuQquEauuRoruEQQEaEsoHoRddRIgerpEIHQOQHWULQEG KD
ORNL
ORNL-1933
Engineering
Poppendiek
Cowen
Breazeale (consultant)
Skainner
Boyd
Alexander
Bettis
Blizard
Bohlmann
Claiborne
Cohen
Copenhaver
Cristy
Cromer
Dytko
Ergen
Fraas
Furgerson
Gray
Gray
Greene
Hoffman
Keilholtz
Lansing
Lawson
Lynch
Manly
Muller
Palmer
Perry
Powers
Savage
Schultheiss
Thomas
Trauger
Warde
Wantland
Whitman
Zmola
Yarosh
Document Reference
Library, Y-12 Branch
123 R F Bacher, California Institute of Technology
124-438 @iven distribution as shown in TID-4500 under Engineering category
439 Division of Research and Medicine, AEC, ORO
DISTRIBUTION PAGE TO BE REMOVED IF REPORT IS GIVEN PUBLIC DISTRIBUTION
TABLE OF CONTENTS
Page
SUMMARY = == === e == i e b
NOMENCIATURE= == cmmmmmac e eomm e —c—ace—c— e —— e e ——————————————— ———— 5
TN TRODUCT ION e m = == ot m e m e o et e e e Gt e o = 8
GENERALIZED RADIAI, TEMPERATURE PROFILESe--cececereccrcmcmmcmmemcnmna= 9
RADIAL TEMPERATURE PROFILES FOR A PIPE SYSTEM WHOSE
WALL IS UNIFORMLY COOLED (AN EXAMPIE)=-w-cececececccecccccceea=—= 23
ANALYSIS OF THE THERMAL STRUCTURE IN A PIPE SYSTEM
WHOSE WALL IS NONUNIFORMLY COOLED=cccccccmmmcmccmrecmmonm—me—————— 28
TEMPERATURE STRUCTURE IN A PIPE SYSTEM WHOSE WALL IS
NONUNIFORMLY COOLED (AN EXAMPLE)wee---c-eccemmcmermmomccmmcnaoa—- 32
CLOSING REMARKStewtcmeemcccrecceccercccscccceccceerme—c— e ———e—e——a= 35
REFERENCES === - == ===~ ==mmmmmmmmmme—m———-ce—————c o me e e e e mm e 37
SUMMARY
This report concerns itself with the application of previously developed
mathematical temperature solutions for forced convection systems having volume
heat sources within the fluids to more general convection problems Con-
vection solutions are tabulated so that i1t 1s possible to determine the de-
tailed radial temperature structure within fluids having uniform volume heat
sources and being uniformly cooled at the duct walls, the detailed tempera-
ture profile of a specific system 1s presented The derivation of equations
describing the temperature structure and heat transfer rates in a duct system
in which the wall is nonuniformly cooled 1s given, the temperature structure
of a specific heat exchange system is also presented
-5 -
NOMENCLATURE
letters
cross sectional heat transfer area, ££2
fluid heat capacity, Btu/1b °F
heat capacity of coolant, Btu/lb OF
heat capacity of volume-heat source fluid, Btu/1b °F
heat transfer conductance or coefficient, Btu/hr £t& °F
heat transfer conductance or coefficient of coolant, Btu/hr ft2 OF
heat transfer conductance or coefficient of volume-heat-source fluid,
Btu/hr £t OF
fluid thermal conductivity, Btu/hr £t° (OF/ft)
pipe wall thermal conductivity, Btu/hr ft2 (OF/ft)
axial heat exchanger length, ft
mass flow rate of coolant, 1b/hr
mass flow rate of volume-heat-source fluid, 1b/hr
heat transfer rate, Btu/hr
total heat transfer rate for heat exchanger of length L, Btu/hr
pipe radius or half the distance between parallel plates, ft
mixed mean coolant temperature of heat exchanger in figure 8, OF
mixed mean coolant temperature at entrance of heat exchanger, °F
mixed mean coolant temperature at exit of heat exchanger, °F
fluid temperature at duct center, °F
mixed mean temperature of the fluid with the volume heat source of the
heat exchanger in figure 8, °F
mixed mean temperature of the fluid with the volume heat source at the
entrance of the heat exchanger, °F
=
O v ®
W
I
- 6 -
mixed mean temperature of the fluid with the volume heat source at the
exit of the heat exchanger, °F
mixed mean fluid temperature, °F
fluid temperature at duct wall, °F
wall temperature in figure 8, °F
wall temperature in figure 8, OF
the wall temperature rise above the mixed mean fluid temperature that
exists for the fluid with the volume heat source with no wall heat flux,
OF
overall heat transfer conductance or coefficient, Btu/hr £t OF
mean fluid velocity, ft/hr
uniform volume heat source, Btu/hr ftJ
axial distance, ft
radial distance from dquct wall, ft
fluid weight density, 1lbs/ft7
pipe wall thickness, ft
Kinematic viscosity, ft2/hr
Terms
Nu
Pr
Re
Dimensionless Moduli
h
= 21'o , Nusselt Modulus for a pipe
k
=
r
o
= 'ch D , Prandtl Moduwlus
k
u_ 2r
= m O , Reynolds Modulus for a pipe
?
om ratio of the difference between wall and mixed mean fluid
ot temperatures to the difference between wall and centerline
temperature for a duct system being cooled at the wall
(from reference 3)
-8 -
INTRODUCTION
Laminar and turbulent forced-convection solutions were derived in
references 1 and 2 for the case where fluids with uniform volume heat sources
were flowing through circular pipes and between parallel plates respectively,
heat was being added to or subtracted from the fluids in a uniform manner at
the duct walls These duct systems were postulated to be long so that the
thermal and hydrodynamic patterns were established and the physical properties
were stipulated to be invariant with temperature The turbulent flow solution
for each system was accomplished by separating the general boundary value
problem into two simpler ones whose solutions were superposed yielding the
solution to the original boundary value problem One boundery value problem
defined a flow system with a volume heat source but with no wall heat flux and
the second one defined a flow system without a volume heat source but with a
uniform wall heat flux In the superposition process, temperatures above datum
temperatures are added, for example, the radial temperature distribution ebove
the centerline temperature for the general boundary value problem is obtained
by adding the radial temperature distributions above the centerline tempera-
tures for the two specific boundary value problems
The present report gives 1) detailed tsbulations of the turbulent tempera-
ture profilesl for volume-heat-source and wall-heat-flux pipe and parallel
plates systemsfor a series of Reynolds and Prandtl moduli and 2) applications
of these temperature solutions to two types of convection systems, namely,
uniformly and nonuniformly cooled ducts containing flowing fluids with volume
heat sources
1 Although the detailed radial temperature profiles for turbulent flow had
been evaluated at the writing of the earlier reports they were not included
at that time, only the dimensionless differences between the wall and mixed
mean fluild temperatures were presented because they are generally of more
interest
-9 -
GENERALIZED RADIAL TEMPERATURE PROFILES
The dimensionless radial temperature profiles within fluids having uniform
volume heat sources and that are flowing in circular pipes and between parsllel
plates under turbulent conditions with no wall heat transfer have been evaluated
from the solutions given in references 1 and 2 and are tabulated in Tables I
and II The corresponding temperature profiles for the case where there are
uniform wall heat fluxes but no volume heat sources have been evaluated from
Martinelli's solutions (reference 3) and are tesbulated in Tables III and IV
Some typical normalized radial temperature profiles for turbulent flow
in a pipe for both the volume heat source and wall heat flux cases for Pr = 1
and Pr = Ol are shown plotted in Figures 1, 2, 3, and % Note how the
shapes of these profiles vary with Reynolds and Prandtl moduli as well as the
manner in which heat is added to the fluids The radial temperature distri-
butions are dependent upon the radial heat flow and eddy diffusivaty distri-
butions in eddition to the boundary layer thicknesses and Prandtl moduli
The dimensionless radisl heat flow distribution for the wall heat flux case
varies linearly from a maximum value at the wall to zero at the duct center,
its shape is essentially not a function of Reynolds modulus However, the
dimensionless radial heat flow distributions for the volume-heat-source case
vary from zero at the wall to a maximum value between the wall and duct
center to zero at the duct center, their shapes vary significantly with
Reynolds modulus The dimensionless eddy diffusivity profiles vary waith radial
distance from the wall asnd Reynolds modulus, and the dimensionless boundary
layer thicknesses are dependent on Reynolds modulus The Prandtl modulus
significantly influences the thermal resistances in the various flow layers
- 10 -
For example, 1n Figure 1 (where several temperature profiles are plotted
for Pr = 1 for the volume-heat-source case) 1t can be seen that the fraction
of the total temperature drop across the laminar sublayer and buffer layer in-
creases as Reynolds modulus decreases, this occurs because the radial heat flow
is proportionately larger in the boundary layers at the lower Reynolds modula
as well as because these layers are thicker under such circumstances Fagure 2
reveals several temperature profiles for Pr = Ol for the volume-heat-source
case, the thermal resistences are much lower in the boundary layers for low
Prandtl moduli fluids and hence the temperature differences across these
layers are relatively smaller The temperature profiles ain Figure 2
asymptoticelly approach the laminar flow temperature profile as the Reynolds
moduli decrease
_'|'|_
UNCLASSIFIED
ORNL-LR-DWG 82214
09
08 \
R
ce \
\
Re 10 000
O3——Re 100 000 -
“ \ Re
—
00C 000
02 ‘
% N\
01
i|__—— LAMINAR SUBLAYER N
u/: FOR Re 10 000 \
1
i I BUFFER L AYER
: :./—FOR Re 10 000 \
A4 111
0 02 04 06 08 {0
n
Fig 1 Radial Temperature Distributions Withina Fluid
Flowing in @ Pipe with a Volume Heat Source in the Fluid
and No Wall Heat Flux (Pr 1, Re 10,000, 100,000,
1,000, 000}
_]2_
UNCLASSIFIED
ORNL-LR DWG B222
10
09
_
\
o \
0
\ /-—Re 10 000
Re 100 000
Re 1{ 000 000 \
7
. \
. \
01
\
finis: e s s
_—LAMINAR SUBLAYER FOR Re 10 000
——BUFFER LAYER FOR Re 10 000
0 02 04 06 08 10
n
Fig 2 Radial Temperature Distributions Within a Fluid
Flowing 1n a Pipe with a Volume Heat Source and No Wall Heat
Flux (Pr OOf Re 10,000, 100,000 1,000,000)
_]3_
UNCLASSIFIED
ORNL—-LR DWG B223
i 0
09
08
07
06
05
04
,—Re 10000
03
—Re 100 000
02 \ \
\ —Re 1 000 000
| \
|
|
01 : : \\\\
L-_AMINAR
%SUBLAYER FOR §\
" I Re 10000 §§
| BUFFER LAYER FOR
| '1 Re 10 000 | \QQ.
1 ] ]
% 02 04 06 08 10
n
Fig 3 Radial Temperature Distributions Within a Fluid
Flowing 'n a Pipe with Wall Heat Flux but No Volume Hegat
Source in the Fluid (Pr 1, Re 10,000, 100,000,
1,000 000)
-14-
UNCLASSIFIED
i O ORNL-LR-DWG B224
()9‘§§t\\
08 \\
07
06
LRe 10 000
‘_DJ
7’1' 05
- |0 \
S(Re 100 000
04 \ \
\ \/—Re 1 000 000
03 \
) \
' i
' : \
1
01— ™
(. LAMINAR SUBLAYER
:‘),/_FOR Re 10 000
i |
. BUFFER LAYER
! ¥ FOR Re 10 000
1 1
o1 1 1 ] ~
0 02 04 06 08 10
n
Fig 4 Radial Temperature Distributions Withina Flutd
Flowing i1na Pipe with Wall Heat Flux but No Volume Heat
Source In the Fluid (Pr 001 Re-10,000, 100,000, 1,000,000)
- 15 -
TABLE I
DIMENSIONLESS RADIAI TEMPERATURE DISTRIBUTION FOR A PIPE
SYSTEM CONTAINING A UNIFORM VOLUMETRIC HEAT SOURCE
BUT HAVING NO HEAT TRANSFERRED AT THE PIPE WALL
t - t@
Wrc,2
k
Re = 5000
n Pr = 001 Pr = Ol Pr =1 Pr = 4 Pr =17 Pr = 10
0 L 1703x10"2 3 7591x1072 5 1021x10-3 1 9956x10™0 1 4197x107° 1 1438x1077
025 4 142k 3 7302 L 8143 1 7076 1 1318 8559
05 L4 0665 3 6542 L 1949 1 2528 7371 5271
075 3 9601 3 5399 3 7000 1 0407 5978 4179
1 3 8Lok4 3 4200 3 2000 8998 5209 3560
15 3 5652 3 1640 2 5429 6975 3898 2745
2 3 2603 2 8701 2 2000 5759 3240 2290
3 2 6761 2 3479 1 6189 4239 2438 1712
L 2 0772 1 8179 1 2311 3219 1851 1299
5 1 5130 1 3240 8934 2335 1343 0942
6 1 0100 8838 5964 1559 0897 0630
8 2715 2368 1602 o417 0241 0170
0 0 0 0 0 0 0
Re = 10,000
0 3 3566x10"2 2 7680x10~2 2 109kx103 7 4364x107% 5 051Lx107* 4 0573x10~ 4
025 3 3287 2 TL0o9 1 86L3 5 3594 3 1k99 2 2433
05 3 2677 2 6800 1 5863 4 2700 2 4659 1 8501
075 3 1797 2 6099 1 3975 3 5204 2 0502 1 4801
1 3 1055 2 5230 1 2192 3 1441 1 8043 1 2679
15 2 9095 2 3401 1 0503 2 7403 1 5401 1 0999
2 2 6927 2 1590 9564 2 4562 1 4082 9888
3 2 0079 1 7560 7505 1 9238 1 1042 7749
L 1 7377 1 3760 575k 1 4739 8461 5936
5 1 2738 1 0081 4208 1 0760 6183 4341
6 8559 6773 2827 7228 4152 2921
8 2319 1835 0768 1956 1131 0795
0 0 0 0 0 0 0
- 16 -
TABLE I (Con't )
=
Re = 100,000
n Pr = 001 Pr = 01 Pr =1 Pr =4 Pr =7 Pr = 10
0 2 3351x1072 9 f944x10-3 1 7885x10~% L4 9508x107° 2 9004x10-5 2 1042x10-5
025 2 3202 9 5800 1 5785 L 0097 2 2403 1 5901
05 2 2851 9 2620 1 4655 3 6859 2 1092 1 4750
075 2 2480 8 9508 1 3823 3 4200 1 9804 1 3801
1 2 1831 8 6115 1 2993 3 2660 1 8661 1 3071
15 2 0612 T 9504 1 1613 2 8299 1 6802 1 1800
2 1 9050 7 2058 1 oke3 2 6180 1 4963 1 0481
3 1 5790 5 8302 8279 2 0798 1 1892 8331
L 1 2430 4 5379 6405 1 6100 9197 6445
5 9172 3 3436 4713 1 1847 6778 4745
6 6197 2 2588 3182 8010 4591 3209
8 1695 6185 0873 2188 1256 0875
0 0 0 0 0 0 0
Re = 1,000,000
0 1 0818x10"2 1 8160x10~7 2 1151x10~% 5 3623x10"6 3 0820x10~6 2 1755x10¢6
025 1 0678 1 7610 1 9582 L 9805 2 8579 1 9703
05 1 0469 1 6760 1 8090 4 5263 2 5839 1 8093
075 1 0179 1 5961 1 6950 4 2400 2 4400 1 7082
1 9808 1 5140 1 6151 4 0405 2 3041 1 6143
15 9118 1 3711 1 4501 3 6201 2 0779 1 4253
2 8270 1 2271 1 2980 3 2474 1 8520 1 2962
3 6720 9799 1 0341 2 5841 1 4729 1 0321
Y 5245 7598 8008 2 0012 1 1400 7983
5 3869 5599 5895 1 k730 8395 5872
6 2617 3785 3985 9963 5677 3971
8 0718 1037 1091 2735 1556 1084
0 0 0 0 0 0 0
- 17 -
TABLE II
DIMENSIONLESS RADIAL TEMPERATURE DISTRIBUTION FOR A PARALLEL
PLATES SYSTEM CONTAINING A UNIFCRM VOLUMETRIC HEAT SOURCE
BUT HAVING NO HEAT TRANSFERRED AT THE WALLS
Wro
K
Re = 5000
n Pr = 001 Pr = 01 Pr =1 Pr =4 Pr =7 Pr = 10
0 6 2533x10™2 5 99L3x10-2 1 5040x10~2 6 4605x10-3 L 6881x10-3 3 9211x1077
025 6 2233 5 9643 1 4741 6 1607 4 3881 3 6211
050 6 1395 5 880k 1 3900 5 3176 3 5451 2 7781
075 6 0125 5 7521 1 2670 4 2975 2 5949 1 8731
1 5 8443 5 5855 1 1500 3 6573 2 1420 1 5230
15 5 Lol 5 1671 9436 2 7625 1 6122 1 1281
2 L 9664 4 7223 7767 2 2974 1 2770 8924
3 4 0215 3 8052 5386 1 4769 8795 5850
L 3 1010 2 9120 3886 1 0699 6188 4348
5 2 2518 2 1154 2802 TT46 4468 3137
6 1 4983 1 4069 1880 5233 2949 2090
8 Lo52 3878 0508 1395 o797 0561
0 0 0 0 0 0 0
Re = 10,000
0 b 6965x107° 4 2910x1072 6 0926x107°0 2 2948x10-3 1 6414x1070 1 5060::10"3
025 L4 6683 4 2631 5 8087 2 0109 1 3583 1 0219
05 4 5046 L 1889 5 1629 1 5038 9435 6729
075 4 4814 4 0790 L 5597 1 3018 788L 5454
1 4 3513 3 9499 4 ou2h 1 1288 6733 4828
15 4 0625 3 6658 3 2626 8915 5210 3704
2 3 7516 3 3641 2 6978 Tl 4133 2878
3 3 0814 2 7488 2 1032 5558 3209 2220
h 2 4102 2 1412 1 6091 4229 ouL7 1702
5 1 7654 1 5658 11777 3089 1784 1245
6 1 1812 1 0479 7957 2074 1200 0832
8 3170 2802 2187 0567 0323 0225
0 0 0 0 0 0 0
- 18 -
TABLE IT (Con't )
Re = 100,000
n Pr = Pr Pr =1 Pr Pr Pr = 10
0 3 1195x107% 1 7325x1072 4 Lhoox10-4 1 2u76x10"% 7 5800x10-5 5 T150x1077
025 3 0995 1 7145 3 8060 9607 5 4550 3 9451
05 3 0615 1 6816 3 5760 8993 5 1097 3 64T
075 3 0075 1 6384 3 3762 8482 I 8251 3 4902
1 2 9426 1 5875 3 1941 8013 L 5648 3 2850
15 2 7776 1 L7hl 2 8820 7192 L 1003 2 9598
2 2 5917 1l 3574 2 5952 6473 3 6898 2 6552
3 2 1637 1 1123 2 0761 5169 2 9552 2 1248
L 1 7117 8728 1 5940 4019 2 3146 1 6551
5 1 2687 6467 1,1881 297k 1 7098 1 2299
6 8585 4387 8081 2000 1 1550 8498
8 2340 1211 2180 0555 3096 2452
0 0 0 0 0 0 0
Re = 1,000,000
0 1 8578x10"2 L4 0304x10-3 5 0065x10™°2 1 2458x10-5 7 6610x10-6 5 2055x10'6
025 1 8468 3 9216 4 6405 11179 6 8949 4 6147
050 1 8179 3 TT45 4 3647 1 0L98 6 5180 4 3747
075 1 7759 3 6133 4 136k 9959 6 1901 L 1347
1l 1 7259 3 4593 3 9206 9438 5 8821 3 9218
15 1 6139 3 1433 3 5386 8519 5 3221 3 5345
2 1 4879 2 8443 3 1861 7578 4 8203 3 1878
3 1 2319 2.2961 2 5563 6119 3 9217 2 5517
4 9724 1 7972 1 9961 L4679 3 1104 1 9947
5 7193 1 3341 14779 3460 2 3703 1 4800
6 4890 9032 1 0043 2039 1 4349 9974
8 1339 2519 2699 0620 3899 2650
0 0 0 0 0 0 0
- 19 -
TABLE III
DIMENSTIONLESS RADIAIL TEMPERATURE DISTRIBUTION FOR A PIPE
SYSTEM HAVING HEAT TRANSFERRED AT THE PIPE WALL
BUT CONTAINING NO VOLUMETRIC HEAT SOURCE
t - te
To - g
Re = 5000
n = 001 Pr = 01 Pr =1 Pr =4 Pr = 7 Pr = 10
0 0 10 10 10 10 10
025 9512 9473 TT76 5902 5049 4531
05 9134 8957 5928 3353 2kl12 1899
075 8552 8428 41812 2517 1777 1388
1 8070 7915 4020 2018 1413 1100
15 7108 6883 2905 1382 0959 0743
2 6169 5946 2214 1020 0704 0545
3 4709 4531 1656 0763 0527 oLO7
4 3462 3336 1261 0581 0401 0310
5 2410 233 0954 0439 0303 0235
6 1539 1515 0703 0324 0223 0173
8 0124 0396 0307 0141 0098 0076