Skip to content
/ MLI Public
forked from SamsungLabs/MLI

Novel View Synthesis with multiplane/multilayer representation: CVPR2022, WACV2023

License

Notifications You must be signed in to change notification settings

palsol/MLI

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

41 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SIMPLI - Self-improving Multiplane-to-layer Images for Novel View Synthesis



Google Colab

WACV 2023

Logo

We suggest to use collab to run our inference code. To see the resulted geometry use viewer incorporated into the notebook. We demonstrate results at our project page.

Build docker image

After downloading the repository, use docker/Dockerfile to create an image that sets up all dependencies.

docker build -t nvs_torch_image ./docker

nvidia-docker container run \
    -it --shm-size=16G \
    -u $(id -u ${USER}):$(id -g ${USER}) \
    --rm \
    -v $(pwd):/home/Develop/nvs_torch  \
    nvs_torch_image:latest

Setup env

cd /home/Develop/nvs_torch
export PYTHONPATH=/home/Develop/nvs_torch/
export TORCH_EXTENSIONS_DIR=tmp
export MPLCONFIGDIR=tmp

Download pretrained StereoLayers model

./pretrained/download.sh

SIMPLI model already in the repo.

Render predefined Dataset

python bin/val_utils/render_val_dataset.py \
       --config pretrained/stereo_layers/stereo_layers.yaml \
       --val-dataset datasets/sword_sample/ \
       --iteration 400000 \
       --output-path outputs

Run Rendering with custom functions

python bin/render.py \
       --config pretrained/stereo_layers/stereo_layers.yaml \
       --checkpoints-path pretrained/stereo_layers/checkpoints \
       --iteration 400000 \
       --output-path outputs

About

Novel View Synthesis with multiplane/multilayer representation: CVPR2022, WACV2023

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 96.2%
  • Jupyter Notebook 3.3%
  • Other 0.5%