Skip to content

Implemented NumbaExecutionEngine #61487

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 5 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v3.0.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@ Other enhancements
- :class:`pandas.api.typing.FrozenList` is available for typing the outputs of :attr:`MultiIndex.names`, :attr:`MultiIndex.codes` and :attr:`MultiIndex.levels` (:issue:`58237`)
- :class:`pandas.api.typing.SASReader` is available for typing the output of :func:`read_sas` (:issue:`55689`)
- :meth:`pandas.api.interchange.from_dataframe` now uses the `PyCapsule Interface <https://arrow.apache.org/docs/format/CDataInterface/PyCapsuleInterface.html>`_ if available, only falling back to the Dataframe Interchange Protocol if that fails (:issue:`60739`)
- Added :class:`pandas.core.apply.NumbaExecutionEngine` as the built-in ``numba`` execution engine for ``apply`` and ``map`` operations (:issue:`61458`)
- Added :meth:`.Styler.to_typst` to write Styler objects to file, buffer or string in Typst format (:issue:`57617`)
- Added missing :meth:`pandas.Series.info` to API reference (:issue:`60926`)
- :class:`pandas.api.typing.NoDefault` is available for typing ``no_default``
Expand Down
74 changes: 60 additions & 14 deletions pandas/core/apply.py
Original file line number Diff line number Diff line change
Expand Up @@ -178,6 +178,60 @@ def apply(
"""


class NumbaExecutionEngine(BaseExecutionEngine):
"""
Numba-based execution engine for pandas apply and map operations.
"""

@staticmethod
def map(
data: np.ndarray | Series | DataFrame,
func,
args: tuple,
kwargs: dict,
decorator: Callable | None,
skip_na: bool,
):
"""
Elementwise map for the Numba engine. Currently not supported.
"""
raise NotImplementedError("Numba map is not implemented yet.")

@staticmethod
def apply(
data: np.ndarray | Series | DataFrame,
func,
args: tuple,
kwargs: dict,
decorator: Callable,
axis: int | str,
):
"""
Apply `func` along the given axis using Numba.
"""
engine_kwargs: dict[str, bool] | None = (
decorator if isinstance(decorator, dict) else None
)

looper_args, looper_kwargs = prepare_function_arguments(
func,
args,
kwargs,
num_required_args=1,
)
# error: Argument 1 to "__call__" of "_lru_cache_wrapper" has
# incompatible type "Callable[..., Any] | str | list[Callable
# [..., Any] | str] | dict[Hashable,Callable[..., Any] | str |
# list[Callable[..., Any] | str]]"; expected "Hashable"
nb_looper = generate_apply_looper(
func,
**get_jit_arguments(engine_kwargs),
)
result = nb_looper(data, axis, *looper_args)
# If we made the result 2-D, squeeze it back to 1-D
return np.squeeze(result)


def frame_apply(
obj: DataFrame,
func: AggFuncType,
Expand Down Expand Up @@ -1094,23 +1148,15 @@ def wrapper(*args, **kwargs):
return wrapper

if engine == "numba":
args, kwargs = prepare_function_arguments(
self.func, # type: ignore[arg-type]
engine_obj = NumbaExecutionEngine()
result = engine_obj.apply(
self.values,
self.func,
self.args,
self.kwargs,
num_required_args=1,
)
# error: Argument 1 to "__call__" of "_lru_cache_wrapper" has
# incompatible type "Callable[..., Any] | str | list[Callable
# [..., Any] | str] | dict[Hashable,Callable[..., Any] | str |
# list[Callable[..., Any] | str]]"; expected "Hashable"
nb_looper = generate_apply_looper(
self.func, # type: ignore[arg-type]
**get_jit_arguments(engine_kwargs),
engine_kwargs,
self.axis,
)
result = nb_looper(self.values, self.axis, *args)
# If we made the result 2-D, squeeze it back to 1-D
result = np.squeeze(result)
else:
result = np.apply_along_axis(
wrap_function(self.func),
Expand Down
Loading