Skip to content

[backport 2.3.x] ENH(string dtype): fallback for HDF5 with UTF-8 surrogates (#60993) #61639

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
114 changes: 85 additions & 29 deletions pandas/io/pytables.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,7 @@
)
from pandas._libs.lib import is_string_array
from pandas._libs.tslibs import timezones
from pandas.compat import HAS_PYARROW
from pandas.compat._optional import import_optional_dependency
from pandas.compat.pickle_compat import patch_pickle
from pandas.errors import (
Expand Down Expand Up @@ -391,6 +392,13 @@ def read_hdf(
DataFrame.to_hdf : Write a HDF file from a DataFrame.
HDFStore : Low-level access to HDF files.

Notes
-----
When ``errors="surrogatepass"``, ``pd.options.future.infer_string`` is true,
and PyArrow is installed, if a UTF-16 surrogate is encountered when decoding
to UTF-8, the resulting dtype will be
``pd.StringDtype(storage="python", na_value=np.nan)``.

Examples
--------
>>> df = pd.DataFrame([[1, 1.0, 'a']], columns=['x', 'y', 'z']) # doctest: +SKIP
Expand Down Expand Up @@ -2182,6 +2190,20 @@ def convert(
# making an Index instance could throw a number of different errors
try:
new_pd_index = factory(values, **kwargs)
except UnicodeEncodeError as err:
if (
errors == "surrogatepass"
and get_option("future.infer_string")
and str(err).endswith("surrogates not allowed")
and HAS_PYARROW
):
new_pd_index = factory(
values,
dtype=StringDtype(storage="python", na_value=np.nan),
**kwargs,
)
else:
raise
except ValueError:
# if the output freq is different that what we recorded,
# it should be None (see also 'doc example part 2')
Expand Down Expand Up @@ -3097,12 +3119,29 @@ def read_index_node(
**kwargs,
)
else:
index = factory(
_unconvert_index(
data, kind, encoding=self.encoding, errors=self.errors
),
**kwargs,
)
try:
index = factory(
_unconvert_index(
data, kind, encoding=self.encoding, errors=self.errors
),
**kwargs,
)
except UnicodeEncodeError as err:
if (
self.errors == "surrogatepass"
and get_option("future.infer_string")
and str(err).endswith("surrogates not allowed")
and HAS_PYARROW
):
index = factory(
_unconvert_index(
data, kind, encoding=self.encoding, errors=self.errors
),
dtype=StringDtype(storage="python", na_value=np.nan),
**kwargs,
)
else:
raise

index.name = name

Expand Down Expand Up @@ -3236,13 +3275,24 @@ def read(
self.validate_read(columns, where)
index = self.read_index("index", start=start, stop=stop)
values = self.read_array("values", start=start, stop=stop)
result = Series(values, index=index, name=self.name, copy=False)
if (
using_string_dtype()
and isinstance(values, np.ndarray)
and is_string_array(values, skipna=True)
):
result = result.astype(StringDtype(na_value=np.nan))
try:
result = Series(values, index=index, name=self.name, copy=False)
except UnicodeEncodeError as err:
if (
self.errors == "surrogatepass"
and get_option("future.infer_string")
and str(err).endswith("surrogates not allowed")
and HAS_PYARROW
):
result = Series(
values,
index=index,
name=self.name,
copy=False,
dtype=StringDtype(storage="python", na_value=np.nan),
)
else:
raise
return result

def write(self, obj, **kwargs) -> None:
Expand Down Expand Up @@ -4704,7 +4754,24 @@ def read(
values = values.reshape((1, values.shape[0]))

if isinstance(values, np.ndarray):
df = DataFrame(values.T, columns=cols_, index=index_, copy=False)
try:
df = DataFrame(values.T, columns=cols_, index=index_, copy=False)
except UnicodeEncodeError as err:
if (
self.errors == "surrogatepass"
and get_option("future.infer_string")
and str(err).endswith("surrogates not allowed")
and HAS_PYARROW
):
df = DataFrame(
values.T,
columns=cols_,
index=index_,
copy=False,
dtype=StringDtype(storage="python", na_value=np.nan),
)
else:
raise
elif isinstance(values, Index):
df = DataFrame(values, columns=cols_, index=index_)
else:
Expand All @@ -4714,23 +4781,10 @@ def read(
assert (df.dtypes == values.dtype).all(), (df.dtypes, values.dtype)

# If str / string dtype is stored in meta, use that.
converted = False
for column in cols_:
dtype = getattr(self.table.attrs, f"{column}_meta", None)
if dtype in ["str", "string"]:
df[column] = df[column].astype(dtype)
converted = True
# Otherwise try inference.
if (
not converted
and using_string_dtype()
and isinstance(values, np.ndarray)
and is_string_array(
values,
skipna=True,
)
):
df = df.astype(StringDtype(na_value=np.nan))
frames.append(df)

if len(frames) == 1:
Expand Down Expand Up @@ -5194,7 +5248,7 @@ def _convert_string_array(data: np.ndarray, encoding: str, errors: str) -> np.nd
# encode if needed
if len(data):
data = (
Series(data.ravel(), copy=False)
Series(data.ravel(), copy=False, dtype="object")
.str.encode(encoding, errors)
._values.reshape(data.shape)
)
Expand Down Expand Up @@ -5234,7 +5288,9 @@ def _unconvert_string_array(
dtype = f"U{itemsize}"

if isinstance(data[0], bytes):
ser = Series(data, copy=False).str.decode(encoding, errors=errors)
ser = Series(data, copy=False).str.decode(
encoding, errors=errors, dtype="object"
)
data = ser.to_numpy()
data.flags.writeable = True
else:
Expand Down
22 changes: 11 additions & 11 deletions pandas/tests/io/pytables/test_store.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,10 +7,6 @@
import numpy as np
import pytest

from pandas._config import using_string_dtype

from pandas.compat import HAS_PYARROW

import pandas as pd
from pandas import (
DataFrame,
Expand Down Expand Up @@ -398,20 +394,24 @@ def test_to_hdf_with_min_itemsize(tmp_path, setup_path):
tm.assert_series_equal(read_hdf(path, "ss4"), concat([df["B"], df2["B"]]))


@pytest.mark.xfail(
using_string_dtype() and HAS_PYARROW,
reason="TODO(infer_string): can't encode '\ud800': surrogates not allowed",
)
@pytest.mark.parametrize("format", ["fixed", "table"])
def test_to_hdf_errors(tmp_path, format, setup_path):
def test_to_hdf_errors(tmp_path, format, setup_path, using_infer_string):
data = ["\ud800foo"]
ser = Series(data, index=Index(data))
ser = Series(data, index=Index(data, dtype="object"), dtype="object")
path = tmp_path / setup_path
# GH 20835
ser.to_hdf(path, key="table", format=format, errors="surrogatepass")

result = read_hdf(path, "table", errors="surrogatepass")
tm.assert_series_equal(result, ser)

if using_infer_string:
# https://github.com/pandas-dev/pandas/pull/60993
# Surrogates fallback to python storage.
dtype = pd.StringDtype(storage="python", na_value=np.nan)
else:
dtype = "object"
expected = Series(data, index=Index(data, dtype=dtype), dtype=dtype)
tm.assert_series_equal(result, expected)


def test_create_table_index(setup_path):
Expand Down
Loading