-
Notifications
You must be signed in to change notification settings - Fork 51
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
d236b64
commit f9c7713
Showing
8 changed files
with
6,147 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
{ | ||
"cells": [], | ||
"metadata": {}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
6 changes: 6 additions & 0 deletions
6
house-prices-ML/.ipynb_checkpoints/Untitled1-checkpoint.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
{ | ||
"cells": [], | ||
"metadata": {}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,164 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"id": "8b324b6b", | ||
"metadata": {}, | ||
"source": [ | ||
"# Import the required tools and libraries" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"id": "635df08c", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import pandas as pd\n", | ||
"from sklearn.preprocessing import OneHotEncoder\n", | ||
"from sklearn.model_selection import train_test_split\n", | ||
"from sklearn.ensemble import RandomForestRegressor\n", | ||
"from sklearn.metrics import mean_absolute_error" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "188c4163", | ||
"metadata": {}, | ||
"source": [ | ||
"# Load the data and remove irrelevant data" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"id": "10aa0c7f", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Read the data\n", | ||
"X = pd.read_csv('./input/train.csv', index_col='Id') \n", | ||
"X_test = pd.read_csv('./input/test.csv', index_col='Id')\n", | ||
"\n", | ||
"# Remove rows with missing target, separate target from predictors\n", | ||
"X.dropna(axis=0, subset=['SalePrice'], inplace=True)\n", | ||
"y = X.SalePrice\n", | ||
"X.drop(['SalePrice'], axis=1, inplace=True)\n", | ||
"\n", | ||
"# To keep things simple, we'll drop columns with missing values\n", | ||
"cols_with_missing = [col for col in X.columns if X[col].isnull().any()] \n", | ||
"X.drop(cols_with_missing, axis=1, inplace=True)\n", | ||
"X_test.drop(cols_with_missing, axis=1, inplace=True)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "c6e1b1aa", | ||
"metadata": {}, | ||
"source": [ | ||
"# Preprocess data" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"id": "79d8d4a9", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Categorical columns that will be one-hot encoded: ['MSZoning', 'Street', 'LotShape', 'LandContour', 'Utilities', 'LotConfig', 'LandSlope', 'Condition1', 'Condition2', 'BldgType', 'HouseStyle', 'RoofStyle', 'RoofMatl', 'ExterQual', 'ExterCond', 'Foundation', 'Heating', 'HeatingQC', 'CentralAir', 'KitchenQual', 'Functional', 'PavedDrive', 'SaleType', 'SaleCondition']\n", | ||
"\n", | ||
"Categorical columns that will be dropped from the dataset: ['Neighborhood', 'Exterior2nd', 'Exterior1st']\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"object_cols = [col for col in X.columns if X[col].dtype == \"object\"]\n", | ||
"# Columns that will be one-hot encoded\n", | ||
"low_cardinality_cols = [col for col in object_cols if X[col].nunique() < 10]\n", | ||
"# Columns that will be dropped from the dataset\n", | ||
"high_cardinality_cols = list(set(object_cols)-set(low_cardinality_cols))\n", | ||
"\n", | ||
"print('Categorical columns that will be one-hot encoded:', low_cardinality_cols)\n", | ||
"print('\\nCategorical columns that will be dropped from the dataset:', high_cardinality_cols)\n", | ||
"\n", | ||
"nullCol=[col for col in X_test.columns if X_test[col].isnull().any()]\n", | ||
"for col in nullCol: \n", | ||
" if X_test[col].dtype=='object':\n", | ||
" most_frequent=max(set(list(X[col])),key=list(X[col]).count) \n", | ||
" X_test[col]=X_test[col].fillna(most_frequent)\n", | ||
" else:\n", | ||
" X_test[col]=X_test[col].fillna(X[col].median())\n", | ||
"\n", | ||
"one_hot_encoder = OneHotEncoder(handle_unknown='ignore', sparse=False)\n", | ||
"OH_cols_train = pd.DataFrame(one_hot_encoder.fit_transform(X[low_cardinality_cols]))\n", | ||
"OH_cols_test = pd.DataFrame(one_hot_encoder.transform(X_test[low_cardinality_cols]))\n", | ||
"\n", | ||
"OH_cols_train.index = X.index\n", | ||
"OH_cols_test.index = X_test.index\n", | ||
"\n", | ||
"num_X_train = X.drop(object_cols, axis=1)\n", | ||
"num_X_test = X_test.drop(object_cols, axis=1)\n", | ||
"\n", | ||
"OH_X_train = pd.concat([OH_cols_train,num_X_train], axis=1)\n", | ||
"OH_X_test = pd.concat([OH_cols_test,num_X_test], axis=1)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "5b7ece15", | ||
"metadata": {}, | ||
"source": [ | ||
"# Fit data on model and predict and save" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"id": "c16eefe2", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"SUCCESS!\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"my_model = RandomForestRegressor(n_estimators=100, criterion='mae', random_state=0)\n", | ||
"my_model.fit(OH_X_train , y)\n", | ||
"preds_test=my_model.predict(OH_X_test)\n", | ||
"output = pd.DataFrame({'Id': X_test.index,'SalePrice': preds_test})\n", | ||
"output.to_csv('submission.csv', index=False)\n", | ||
"print(\"SUCCESS!\")" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.8.8" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,130 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"id": "6dca7e38", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import pandas as pd\n", | ||
"from sklearn.preprocessing import OneHotEncoder\n", | ||
"from xgboost import XGBRegressor" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"id": "8ed5f719", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Read the data\n", | ||
"X = pd.read_csv('./input/train.csv', index_col='Id') \n", | ||
"X_test = pd.read_csv('./input/test.csv', index_col='Id')\n", | ||
"\n", | ||
"# Remove rows with missing target, separate target from predictors\n", | ||
"X.dropna(axis=0, subset=['SalePrice'], inplace=True)\n", | ||
"y = X.SalePrice\n", | ||
"X.drop(['SalePrice'], axis=1, inplace=True)\n", | ||
"\n", | ||
"# To keep things simple, we'll drop columns with missing values\n", | ||
"cols_with_missing = [col for col in X.columns if X[col].isnull().any()] \n", | ||
"X.drop(cols_with_missing, axis=1, inplace=True)\n", | ||
"X_test.drop(cols_with_missing, axis=1, inplace=True)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"id": "b8c65529", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Categorical columns that will be one-hot encoded: ['MSZoning', 'Street', 'LotShape', 'LandContour', 'Utilities', 'LotConfig', 'LandSlope', 'Condition1', 'Condition2', 'BldgType', 'HouseStyle', 'RoofStyle', 'RoofMatl', 'ExterQual', 'ExterCond', 'Foundation', 'Heating', 'HeatingQC', 'CentralAir', 'KitchenQual', 'Functional', 'PavedDrive', 'SaleType', 'SaleCondition']\n", | ||
"\n", | ||
"Categorical columns that will be dropped from the dataset: ['Exterior2nd', 'Neighborhood', 'Exterior1st']\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"object_cols = [col for col in X.columns if X[col].dtype == \"object\"]\n", | ||
"# Columns that will be one-hot encoded\n", | ||
"low_cardinality_cols = [col for col in object_cols if X[col].nunique() < 10]\n", | ||
"# Columns that will be dropped from the dataset\n", | ||
"high_cardinality_cols = list(set(object_cols)-set(low_cardinality_cols))\n", | ||
"\n", | ||
"print('Categorical columns that will be one-hot encoded:', low_cardinality_cols)\n", | ||
"print('\\nCategorical columns that will be dropped from the dataset:', high_cardinality_cols)\n", | ||
"\n", | ||
"nullCol=[col for col in X_test.columns if X_test[col].isnull().any()]\n", | ||
"for col in nullCol: \n", | ||
" if X_test[col].dtype=='object':\n", | ||
" most_frequent=max(set(list(X[col])),key=list(X[col]).count) \n", | ||
" X_test[col]=X_test[col].fillna(most_frequent)\n", | ||
" else:\n", | ||
" X_test[col]=X_test[col].fillna(X[col].median())\n", | ||
"\n", | ||
"one_hot_encoder = OneHotEncoder(handle_unknown='ignore', sparse=False)\n", | ||
"OH_cols_train = pd.DataFrame(one_hot_encoder.fit_transform(X[low_cardinality_cols]))\n", | ||
"OH_cols_test = pd.DataFrame(one_hot_encoder.transform(X_test[low_cardinality_cols]))\n", | ||
"\n", | ||
"OH_cols_train.index = X.index\n", | ||
"OH_cols_test.index = X_test.index\n", | ||
"\n", | ||
"num_X_train = X.drop(object_cols, axis=1)\n", | ||
"num_X_test = X_test.drop(object_cols, axis=1)\n", | ||
"\n", | ||
"OH_X_train = pd.concat([OH_cols_train,num_X_train], axis=1)\n", | ||
"OH_X_test = pd.concat([OH_cols_test,num_X_test], axis=1)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"id": "da44fb2a", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"SUCCESS!\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"model=XGBRegressor(n_estimators=200,learning_rate=0.005)\n", | ||
"model.fit(OH_X_train,y)\n", | ||
"preds_test=model.predict(OH_X_test)\n", | ||
"output = pd.DataFrame({'Id': X_test.index,'SalePrice': preds_test})\n", | ||
"output.to_csv('submission1.csv', index=False)\n", | ||
"print(\"SUCCESS!\")" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.8.8" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
Oops, something went wrong.