Skip to content

Commit

Permalink
Initial commit
Browse files Browse the repository at this point in the history
  • Loading branch information
adamamer20 committed Jan 2, 2024
0 parents commit 6b727e6
Show file tree
Hide file tree
Showing 8 changed files with 393 additions and 0 deletions.
2 changes: 2 additions & 0 deletions .gitattributes
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
# Auto detect text files and perform LF normalization
* text=auto
152 changes: 152 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,152 @@
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class

# C extensions
*.so

# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST

# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec

# Installer logs
pip-log.txt
pip-delete-this-directory.txt

# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/

# Translations
*.mo
*.pot

# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal

# Flask stuff:
instance/
.webassets-cache

# Scrapy stuff:
.scrapy

# Sphinx documentation
docs/_build/

# PyBuilder
.pybuilder/
target/

# Jupyter Notebook
.ipynb_checkpoints

# IPython
profile_default/
ipython_config.py

# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version

# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock

# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock

# PEP 582; used by e.g. github.com/David-OConnor/pyflow
__pypackages__/

# Celery stuff
celerybeat-schedule
celerybeat.pid

# SageMath parsed files
*.sage.py

# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/

# Spyder project settings
.spyderproject
.spyproject

# Rope project settings
.ropeproject

# mkdocs documentation
/site

# mypy
.mypy_cache/
.dmypy.json
dmypy.json

# Pyre type checker
.pyre/

# pytype static type analyzer
.pytype/

# Cython debug symbols
cython_debug/

# PyCharm
# JetBrains specific template is maintainted in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/
21 changes: 21 additions & 0 deletions LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
MIT License

Copyright (c) 2024 Adam Amer

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
2 changes: 2 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
# mesa-frames

Empty file added __init__.py
Empty file.
46 changes: 46 additions & 0 deletions agent.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
from dataclasses import dataclass
from uuid import uuid4
import pandas as pd
from numpy.random import randint

@dataclass
class AgentParams():
"""The AgentParams class is a dataclass that contains the parameters of an Agent.
It is used to initialize the Agent class.
"""
pass

class Agent():
"""The Agent class is a class that defines the basic attributes and methods of an agent.
It is used as a parent class for all the other agents.
Parameters:
----------
params : AgentParams
The parameters of the Agent. Default: None
dtypes : dict[str, str]
The data types of the attributes of the Agent. Default: {'id' : 'int64', 'type' : 'str'}
values : dict[str, any]
The values of the attributes of the Agent. Default: {'id' : lambda: uuid4().int >> 64, 'status' : 'free'}
model : Model
The model of the simulation where the Agent is used. See streetcrime/model/model.py. Default: None
agents : gpd.GeoDataFrame
The GeoDataFrame containing all Agents. Default: None
"""

params : AgentParams = None
dtypes : dict[str, str] = {
'id' : 'int64',
'type' : 'str',
}
model : 'Model' = None
mask : pd.Series = None

@classmethod
def __init__(cls):
cls.model.agents.loc[cls.mask, 'id'] = randint(low=-9223372036854775808, high=9223372036854775807, size = cls.mask.sum(), dtype='int64')

class GeoAgent(Agent):
dtypes : dict[str, str] = {
'geometry' : 'geometry'
}
160 changes: 160 additions & 0 deletions model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,160 @@
from mesa_frames.agent import Agent
from mesa_frames.space import Space, GeoSpace
import pandas as pd
import geopandas as gpd
from uuid import uuid4
from time import time
from copy import deepcopy
from warnings import warn

class Model():

def __init__(self,
space: Space = None,
n_steps: int = None,
p_agents: dict[type[Agent], float] = None,
n_agents: int = None,
data_collection: str = '2d', #TODO: implement different data collection frequencies (xw, xd, xh, weekly, daily, hourly, per every step)
**kwargs):

#self._verify_parameters(data_collection)

# Initialize model attributes
self.id = uuid4().int >> 64
self.n_agents : int = None
self.agent_types = None
self.agents : pd.DataFrame | gpd.GeoDataFrame = None
self.p_agents = p_agents
self.space = space
self.n_steps = n_steps
self.n_agents = n_agents

# Initialize data collection
self._initialize_data_collection(data_collection)

for key, value in kwargs.items():
setattr(self, key, value)

def create_agents(self,
p_agents : dict[type[Agent], float] = None,
n_agents : int = None) -> None:
"""Creates the agents of the model and adds them to the schedule and the space
Parameters
----------
num_agents : int
The number of agents to create
agents : dict[type[agent], float]
The dictionary of agents to create. The keys are the types of agents and the values are the percentages of each agent type to create.
"""
start_time = time()
print("Creating agents: ...")

mros = [[agent.__mro__[:-1], p] for agent, p in p_agents.items()]
mros_copy = deepcopy(mros)
agent_types = []

# Create a "merged MRO" (inspired by C3 linearization algorithm)
while True:
candidate_added = False
#if all mros are empty, the merged mro is done
if not any(mro[0] for mro in mros):
break
for mro in mros:
# If mro is empty, continue
if not mro[0]:
continue
# candidate = head
candidate = mro[0][0]
# If candidate appears in the tail of another MRO, skip it for now (because other agent_types depend on it, will be added later)
if any(candidate in other_mro[0][1:] for other_mro in mros if other_mro is not mro):
continue
else:
p = 0
for i, other_mro in enumerate(mros):
if other_mro[0][0] == candidate:
p += other_mro[1]
mros[i][0] = other_mro[0][1:]
else:
continue
agent_types.append((candidate, p)) #Safe to add it
candidate_added = True
# If there wasn't any good head, there is an inconsistent hierarchy
if not candidate_added:
raise ValueError("Inconsistent hierarchy")
self.agent_types = list(reversed(agent_types))

### Create DataFrame using vars and values for every class
columns = set()
dtypes = {}
for agent_type in self.agent_types:
for key, val in agent_type[0].dtypes.items():
if key not in columns:
columns.add(key)
dtypes[key] = val

if isinstance(self.space, GeoSpace):
self.agents = gpd.GeoDataFrame(index=pd.RangeIndex(0, n_agents), columns = list(columns), crs = self.space.crs)
else:
self.agents = pd.DataFrame(index=pd.RangeIndex(0, n_agents), columns = list(columns))

#Populate type column
start_index = 0
for i, (_, p) in enumerate(p_agents.items()):
self.agents.loc[start_index:start_index + int(n_agents * p)-1, 'type'] = str(mros_copy[i][0])
start_index += int(n_agents * p)

#Initialize model and mask attributes for agents
Agent.model = self
self.update_agents_masks()

#Execute init method for every agent
for agent in p_agents:
agent.__init__()

for col, dtype in dtypes.items():
if 'int' in dtype and self.agents[col].isna().sum() > 0:
#warn(f'Pandas does not support NaN values for int{dtype[-2:]} dtypes. Changing dtype to float{dtype[-2:]} for {col}', RuntimeWarning)
dtypes[col] = 'float' + dtype[-2:]
self.agents = self.agents.astype(dtypes)
self.agents.set_index('id', inplace=True)
#Have to reassign masks because index changed
self.update_agents_masks()
print("Created agents: " + "--- %s seconds ---" % (time() - start_time))

def run_model(self) -> None:
for _ in range(self.n_steps):
self.step()

def step(self) -> None:
for agent in self.p_agents:
agent.step()

def _initialize_data_collection(self, how = '2d') -> None:
"""Initializes the data collection of the model.
Parameters
----------
how : str
The frequency of the data collection. It can be 'xd', 'xd', 'xh', 'weekly', 'daily', 'hourly'.
"""
#TODO: finish implementation of different data collections
if how == '2d':
return

def update_agents_masks(self) -> None:
for agent_type in self.agent_types:
agent_type[0].mask = self.agents['type'].str.contains(str(agent_type[0]))

'''def _verify_parameters(self, p_agents, n_agents, data_collection) -> None:
"""Verifies that the parameters of the model are correct.
"""
if sum(p_agents.values()) != 1:
raise ValueError("Sum of proportions of agents should be 1")
if any(p < 0 or p > 1 for p in p_agents.values()):
raise ValueError("Proportions of agents should be between 0 and 1")
if n_agents <= 0 or n_agents % 1 != 0:
raise ValueError("Number of agents should be an integer greater than 0")
#TODO: implement data_collection verification'''
Loading

0 comments on commit 6b727e6

Please sign in to comment.