Skip to content
/ NiMARE Public
forked from tsalo/NiMARE

Coordinate- and Image-based meta-analysis in Python

License

Notifications You must be signed in to change notification settings

puckr/NiMARE

This branch is 705 commits behind tsalo/NiMARE:main.

Folders and files

NameName
Last commit message
Last commit date

Latest commit

3a3e5ed · Feb 4, 2019
Jan 20, 2019
Jan 14, 2019
Jan 27, 2019
Jan 15, 2019
Jan 21, 2019
May 18, 2018
Nov 27, 2018
May 18, 2018
Feb 4, 2019
May 13, 2018
Jan 14, 2019
Jan 16, 2019
Apr 9, 2018
Jan 15, 2019
Jan 18, 2019
Jan 16, 2019
Jan 14, 2019
Jan 16, 2019
Jan 15, 2019

Repository files navigation

NiMARE: Neuroimaging Meta-Analysis Research Environment

A Python library for coordinate- and image-based meta-analysis.

Supported meta-analytic methods (nimare.meta)

  • Coordinate-based methods (nimare.meta.cbma)
    • Kernel-based methods
      • Activation likelihood estimation (ALE)
      • Specific coactivation likelihood estimation (SCALE)
      • Multilevel kernel density analysis (MKDA)
      • Kernel density analysis (KDA)
    • Model-based methods (nimare.meta.cbma.model)
      • Bayesian hierarchical cluster process model (BHICP)
      • Hierarchical Poisson/Gamma random field model (HPGRF)
      • Spatial Bayesian latent factor regression (SBLFR)
      • Spatial binary regression (SBR)
  • Image-based methods (nimare.meta.ibma)
    • Mixed effects general linear model (MFX-GLM)
    • Random effects general linear model (RFX-GLM)
    • Fixed effects general linear model (FFX-GLM)
    • Stouffer's meta-analysis
    • Random effects Stouffer's meta-analysis
    • Weighted Stouffer's meta-analysis
    • Fisher's meta-analysis

Additional functionality

  • Automated annotation (nimare.annotate)
    • Tf-idf vectorization of text (nimare.annotate.tfidf)
    • Ontology-based annotation (nimare.annotate.ontology)
      • Cognitive Paradigm Ontology (nimare.annotate.ontology.cogpo)
      • Cognitive Atlas (nimare.annotate.ontology.cogat)
    • Topic model-based annotation (nimare.annotate.topic)
      • Latent Dirichlet allocation (nimare.annotate.topic.lda)
      • Generalized correspondence latent Dirichlet allocation (nimare.annotate.topic.gclda)
      • Deep Boltzmann machines (nimare.annotate.topic.boltzmann)
    • Vector model-based annotation (nimare.annotate.vector)
      • Global Vectors for Word Representation model (nimare.annotate.vector.word2brain)
      • Text2Brain model (nimare.annotate.vector.text2brain)
  • Database extraction (nimare.dataset.extract)
    • NeuroVault
    • Neurosynth
    • Brainspell
    • PubMed abstract extraction
  • Functional characterization analysis (nimare.decode)
    • BrainMap decoding
    • Neurosynth correlation-based decoding
    • Neurosynth MKDA-based decoding
    • BrainMap decoding
    • Text2brain encoding
    • Generalized correspondence latent Dirichlet allocation (GCLDA)
  • Meta-analytic parcellation (nimare.parcellate)
    • Meta-analytic parcellation based on text (MAPBOT)
    • Coactivation-base parcellation (CBP)
    • Meta-analytic activation modeling-based parcellation (MAMP)
  • Common workflows (nimare.workflows)
    • Meta-analytic coactivation modeling (MACM)
    • Meta-analytic clustering analysis
    • Meta-analytic independent components analysis (metaICA)

Installation

Local installation (development version)

pip install git+https://github.com/neurostuff/NiMARE.git#egg=nimare[peaks2maps-cpu]

If you have TensorFlow configured to take advantage of your local GPU use

pip install git+https://github.com/neurostuff/NiMARE.git#egg=nimare[peaks2maps-gpu]

Installation with Docker

To build the Docker image:

docker build -t test/nimare .

To run the Docker container:

docker run -it -v `pwd`:/home/neuro/code/NiMARE -p8888:8888 test/nimare bash

Once inside the container, you can install NiMARE:

python /home/neuro/code/NiMARE/setup.py develop

Contributing

Please see our contributing guidelines for more information on contributing to NiMARE.

We ask that all contributions to NiMARE respect our code of conduct.

About

Coordinate- and Image-based meta-analysis in Python

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 97.9%
  • Dockerfile 1.8%
  • Shell 0.3%