Skip to content

Added type hints to discrete distributions in pymc/distributions/discrete.pyAdd type hints to discrete distributions #7701

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
58 changes: 49 additions & 9 deletions pymc/distributions/discrete.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,8 @@
# limitations under the License.
import warnings

from typing import Optional

import numpy as np
import pytensor.tensor as pt

Expand Down Expand Up @@ -118,7 +120,14 @@ class Binomial(Discrete):
rv_op = binomial

@classmethod
def dist(cls, n, p=None, logit_p=None, *args, **kwargs):
def dist(
cls,
n: DIST_PARAMETER_TYPES,
p: Optional[DIST_PARAMETER_TYPES] = None,
logit_p: Optional[DIST_PARAMETER_TYPES] = None,
*args,
**kwargs,
):
if p is not None and logit_p is not None:
raise ValueError("Incompatible parametrization. Can't specify both p and logit_p.")
elif p is None and logit_p is None:
Expand Down Expand Up @@ -234,7 +243,14 @@ def BetaBinom(a, b, n, x):
rv_op = betabinom

@classmethod
def dist(cls, alpha, beta, n, *args, **kwargs):
def dist(
cls,
alpha: DIST_PARAMETER_TYPES,
beta: DIST_PARAMETER_TYPES,
n: DIST_PARAMETER_TYPES,
*args,
**kwargs,
):
alpha = pt.as_tensor_variable(alpha)
beta = pt.as_tensor_variable(beta)
n = pt.as_tensor_variable(n, dtype=int)
Expand Down Expand Up @@ -341,7 +357,13 @@ class Bernoulli(Discrete):
rv_op = bernoulli

@classmethod
def dist(cls, p=None, logit_p=None, *args, **kwargs):
def dist(
cls,
p: Optional[DIST_PARAMETER_TYPES] = None,
logit_p: Optional[DIST_PARAMETER_TYPES] = None,
*args,
**kwargs,
):
if p is not None and logit_p is not None:
raise ValueError("Incompatible parametrization. Can't specify both p and logit_p.")
elif p is None and logit_p is None:
Expand Down Expand Up @@ -465,7 +487,8 @@ def DiscreteWeibull(q, b, x):
rv_op = DiscreteWeibullRV.rv_op

@classmethod
def dist(cls, q, beta, *args, **kwargs):
def dist(cls, q: DIST_PARAMETER_TYPES, beta: DIST_PARAMETER_TYPES, *args, **kwargs):

return super().dist([q, beta], **kwargs)

def support_point(rv, size, q, beta):
Expand Down Expand Up @@ -553,7 +576,8 @@ class Poisson(Discrete):
rv_op = poisson

@classmethod
def dist(cls, mu, *args, **kwargs):
def dist(cls, mu: DIST_PARAMETER_TYPES, *args, **kwargs):

mu = pt.as_tensor_variable(mu)
return super().dist([mu], *args, **kwargs)

Expand Down Expand Up @@ -677,7 +701,16 @@ def NegBinom(a, m, x):
rv_op = nbinom

@classmethod
def dist(cls, mu=None, alpha=None, p=None, n=None, *args, **kwargs):
def dist(
cls,
mu: Optional[DIST_PARAMETER_TYPES] = None,
alpha: Optional[DIST_PARAMETER_TYPES] = None,
p: Optional[DIST_PARAMETER_TYPES] = None,
n: Optional[DIST_PARAMETER_TYPES] = None,
*args,
**kwargs,
):

n, p = cls.get_n_p(mu=mu, alpha=alpha, p=p, n=n)
n = pt.as_tensor_variable(n)
p = pt.as_tensor_variable(p)
Expand Down Expand Up @@ -790,7 +823,8 @@ class Geometric(Discrete):
rv_op = geometric

@classmethod
def dist(cls, p, *args, **kwargs):
def dist(cls, p: DIST_PARAMETER_TYPES, *args, **kwargs):

p = pt.as_tensor_variable(p)
return super().dist([p], *args, **kwargs)

Expand Down Expand Up @@ -1027,7 +1061,8 @@ class DiscreteUniform(Discrete):
rv_op = discrete_uniform

@classmethod
def dist(cls, lower, upper, *args, **kwargs):
def dist(cls, lower: DIST_PARAMETER_TYPES, upper: DIST_PARAMETER_TYPES, *args, **kwargs):

lower = pt.floor(lower)
upper = pt.floor(upper)
return super().dist([lower, upper], **kwargs)
Expand Down Expand Up @@ -1123,7 +1158,12 @@ class Categorical(Discrete):
rv_op = categorical

@classmethod
def dist(cls, p=None, logit_p=None, **kwargs):
def dist(
cls,
p: Optional[DIST_PARAMETER_TYPES] = None,
logit_p: Optional[DIST_PARAMETER_TYPES] = None,
**kwargs,
):
if p is not None and logit_p is not None:
raise ValueError("Incompatible parametrization. Can't specify both p and logit_p.")
elif p is None and logit_p is None:
Expand Down
2 changes: 1 addition & 1 deletion pymc/distributions/distribution.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@
from functools import singledispatch
from typing import Any, TypeAlias

import numpy as np
import numpy as np # type: ignore

from pytensor import tensor as pt
from pytensor.compile.builders import OpFromGraph
Expand Down