-
Notifications
You must be signed in to change notification settings - Fork 365
feat: TensorRT AOT Plugin #3504
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,156 @@ | ||
import argparse | ||
from typing import Tuple, Union | ||
|
||
|
||
import tensorrt as trt | ||
import tensorrt.plugin as trtp | ||
import torch | ||
import torch_tensorrt | ||
import triton | ||
import triton.language as tl | ||
|
||
|
||
trt_logger = trt.Logger(trt.Logger.VERBOSE) | ||
|
||
|
||
@triton.jit | ||
def add_one_kernel(x_ptr, n_elements, y_ptr, BLOCK_SIZE: tl.constexpr): | ||
pid = tl.program_id(0) | ||
block_start = pid * BLOCK_SIZE | ||
offsets = block_start + tl.arange(0, BLOCK_SIZE) | ||
mask = offsets < n_elements | ||
x = tl.load(x_ptr + offsets, mask=mask) | ||
output = x + 1 | ||
tl.store(y_ptr + offsets, output, mask=mask) | ||
|
||
|
||
@torch.library.custom_op("my::add_one", mutates_args=()) # type: ignore[misc] | ||
def add_one( | ||
X: torch.Tensor | ||
) -> torch.Tensor: | ||
# Ensure the tensors are on the GPU | ||
assert X.is_cuda | ||
|
||
# Create output tensor | ||
Y = torch.empty_like(X) | ||
|
||
# Define block size | ||
BLOCK_SIZE = 256 | ||
|
||
# Grid of programs | ||
grid = lambda meta: (triton.cdiv(X.numel(), meta["BLOCK_SIZE"]),) | ||
|
||
# Launch the kernel | ||
add_one_kernel[grid](X, X.numel(), Y, BLOCK_SIZE=BLOCK_SIZE) | ||
|
||
return Y | ||
|
||
|
||
@torch.library.register_fake("my::add_one") | ||
def _(X: torch.Tensor) -> torch.Tensor: | ||
return X | ||
|
||
|
||
# torch_tensorrt.dynamo.conversion.plugins.generate_plugin( | ||
# "my::add_one" | ||
# ) | ||
|
||
@trtp.register("my::add_one") | ||
def add_plugin_desc(X: trtp.TensorDesc) -> Tuple[trtp.TensorDesc]: | ||
return X.like() | ||
|
||
@trtp.aot_impl("my::add_one") | ||
def add_plugin_aot_impl( | ||
X: trtp.TensorDesc, outputs: Tuple[trtp.TensorDesc], tactic: int | ||
) -> Tuple[Union[str, bytes], Union[str, bytes], trtp.KernelLaunchParams, trtp.SymExprs]: | ||
|
||
|
||
type_str = "fp32" if X.dtype == trt.float32 else "fp16" | ||
|
||
block_size = 256 | ||
src = triton.compiler.ASTSource( | ||
fn=add_one_kernel, | ||
signature={ | ||
"x_ptr": f"*{type_str}", | ||
"n_elements": "i32", | ||
"y_ptr": f"*{type_str}", | ||
"BLOCK_SIZE": "constexpr", | ||
}, | ||
constants={ | ||
"BLOCK_SIZE": block_size, | ||
}, | ||
) | ||
|
||
compiled_kernel = triton.compile(src) | ||
|
||
N = X.shape_expr.numel() | ||
launch_params = trtp.KernelLaunchParams() | ||
|
||
# grid dims | ||
launch_params.grid_x = trtp.cdiv(N, block_size) | ||
# block dims | ||
launch_params.block_x = compiled_kernel.metadata.num_warps * 32 | ||
# shared memory | ||
launch_params.shared_mem = compiled_kernel.metadata.shared | ||
|
||
extra_args = trtp.SymIntExprs(1) | ||
extra_args[0] = trtp.SymInt32(N) | ||
|
||
return ( | ||
compiled_kernel.metadata.name, | ||
compiled_kernel.asm["ptx"], | ||
launch_params, | ||
extra_args, | ||
) | ||
|
||
torch_tensorrt.dynamo.conversion.plugins.generate_plugin_converter( | ||
"my::add_one", | ||
supports_dynamic_shapes=False, | ||
requires_output_allocator=False, | ||
aot=True, | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. So I think that we need 2 things. 1. there should be a flag something like |
||
) | ||
|
||
|
||
class MyModel(torch.nn.Module): | ||
def __init__(self): | ||
super().__init__() | ||
|
||
def forward(self, X: torch.Tensor) -> torch.Tensor: | ||
res = torch.ops.my.add_one.default(X) | ||
|
||
return res | ||
|
||
|
||
if __name__ == "__main__": | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
"--aot", action="store_true", help="Try to use AOT compilation", default=False | ||
) | ||
args = parser.parse_args() | ||
|
||
|
||
|
||
my_model = MyModel().to("cuda") | ||
m = torch.full((64, 64), 2, device="cuda", dtype=torch.float) | ||
|
||
# This works! | ||
assert my_model(X=m)[0][0] == 3.0 | ||
|
||
|
||
with torch_tensorrt.logging.debug(): | ||
trt_inputs = [m] | ||
model_trt = torch_tensorrt.compile( | ||
my_model, | ||
inputs=trt_inputs, | ||
debug=True, | ||
min_block_size=1, | ||
) | ||
print("Model compiled successfully!") | ||
print("Running inference with compiled model...") | ||
for i in range(10): | ||
res = model_trt(m) | ||
assert torch.allclose(res, my_model(m)), "Results do not match!" | ||
|
||
print("Inference successful!") | ||
print(res) |
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -31,6 +31,7 @@ def _generate_plugin_converter( | |
priority: ConverterPriority = ConverterPriority.STANDARD, | ||
supports_dynamic_shapes: bool = False, | ||
requires_output_allocator: bool = False, | ||
aot: bool = False, | ||
) -> DynamoConverterImplSignature: | ||
torch_target = getattr(getattr(torch.ops, namespace), op_name) | ||
overload_str = overload if overload else "" | ||
|
@@ -80,7 +81,7 @@ def custom_kernel_converter( | |
if isinstance(v, torch.fx.immutable_collections.immutable_list): | ||
kwargs[k] = np.array(v) | ||
|
||
layer = ctx.net.add_plugin(plugin(*itensor_args, **kwargs)) | ||
layer = ctx.net.add_plugin(plugin(*itensor_args, **kwargs), aot=aot) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. there should be a utility function that checks on |
||
assert layer, f"{namespace}::{name} plugin layer was not able to be created" | ||
_LOGGER.debug( | ||
f"Adding generated plugin for {namespace}::{name} to tensorrt network" | ||
|
@@ -107,6 +108,7 @@ def generate_plugin_converter( | |
priority: ConverterPriority = ConverterPriority.STANDARD, | ||
supports_dynamic_shapes: bool = False, | ||
requires_output_allocator: bool = False, | ||
aot: bool = False, | ||
) -> DynamoConverterImplSignature: | ||
plugin_ns, plugin_name = plugin_id.split("::") | ||
return _generate_plugin_converter( | ||
|
@@ -116,4 +118,5 @@ def generate_plugin_converter( | |
priority=priority, | ||
supports_dynamic_shapes=supports_dynamic_shapes, | ||
requires_output_allocator=requires_output_allocator, | ||
aot=aot, | ||
) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Can we not use
torch_tensorrt.dynamo.conversion.custom_op
here?