-
Notifications
You must be signed in to change notification settings - Fork 321
[reland] Refactor TorchAOBaseTensor for better BC (#2793) #2855
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
jerryzh168
merged 1 commit into
pytorch:main
from
jerryzh168:reland-torchao-base-tensor-changes
Aug 23, 2025
Merged
[reland] Refactor TorchAOBaseTensor for better BC (#2793) #2855
jerryzh168
merged 1 commit into
pytorch:main
from
jerryzh168:reland-torchao-base-tensor-changes
Aug 23, 2025
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
🔗 Helpful Links🧪 See artifacts and rendered test results at hud.pytorch.org/pr/pytorch/ao/2855
Note: Links to docs will display an error until the docs builds have been completed. ❌ 1 New Failure, 1 Cancelled JobAs of commit 3df4541 with merge base 27f4d75 ( NEW FAILURE - The following job has failed:
CANCELLED JOB - The following job was cancelled. Please retry:
This comment was automatically generated by Dr. CI and updates every 15 minutes. |
andrewor14
approved these changes
Aug 22, 2025
a832bf0
to
b81e231
Compare
Summary: After this PR, tensors inheriting from TorchAOBaseTensor will have better support BC, that is if they add some optional tensor data attribute or optional non-tensor attribute, we will still have BC without any additional changes. More Details: The BC story we are looking at is that, after we land some tensor, e.g. Int4Tensor, Float8Tensor, future changes should only add optional Tensor data attributes and optional non-Tensor attributes to the Tensor (other bigger changes will require a version bump, we need to add that too). The current TorchAOBaseTensor doesn’t support this very well. also see pytorch#2840 for a real test that adds both an optional tensor and optional non-tensor attribute to Float8Tensor, and the BC test in https://github.com/pytorch/ao/blob/main/test/integration/test_load_and_run_checkpoint.py that tests Float8Tensor does not fail. Docs for current TorchAOBaseTensor: https://github.com/pytorch/ao/blob/e6b38bb0e1477ae6aaca0a3d30de70598be43290/torchao/utils.py#L726-L731 `tensor_data_names` (List[str]): list of names of all requires tensor_data, order should match the `__init__` list of tensor subclass `optional_tensor_data_names` (List[str]): it's optional to define this field to have the additional boilerplate functions been implemented for you, but this will be need if there are some optional Tensor attributes, when defined, this will be a list of names of Tensors that can be optional `tensor_attribute_names` (List[str]): list of names of non-Tensor attributes, order should match the `__init__` list of tensor subclass, following all the `tensor_data_names` arguments and `optional_tensor_data_names` Problems: current optional_tensor_data_names is not truly optional, since it is followed by tensor_attribute_names which contains both required and optional attributes. So if we add a tensor data attribute to Tensor, it will break BC. Here are a few options: ``` class Int4Tensor(TorchAOBaseTensor): tensor_data_names = ["qdata", "scale", "zero_point"] optional_tensor_data_names = ["act_scale"] tensor_attribute_names = ["block_size", "shape", "_demo_only_optional_attr"] def __init__(self, qdata, scale, zero_point, act_scale=None, block_size=None, shape=None, _demo_only_optional_attr=None): ... # for BC def __setstate__(self, state): torch._utils._set_obj_state(self, state) if "act_scale" not in self.__dict__: self.act_scale = None ``` ``` class Int4Tensor(TorchAOBaseTensor): tensor_data_names = ["qdata", "scale", "zero_point"] optional_tensor_data_names = ["act_scale"] required_tensor_attribute_names = ["block_size", "shape"] optional_tensor_attribute_names = ["_demo_only_optional_attr"] def __init__(self, qdata, scale, zero_point, block_size, shape, act_scale=None, _demo_only_optional_attr = None): ... # for BC def __setstate__(self, state): torch._utils._set_obj_state(self, state) if "act_scale" not in self.__dict__: self.act_scale = None ``` ``` class Int4Tensor(TorchAOBaseTensor): tensor_data_names = ["qdata", "scale", "zero_point"] tensor_attribute_names = ["block_size", "shape", "_demo_only_optional_attr"] optional_tensor_data_names = ["act_scale"] def __init__(self, qdata, scale, zero_point, block_size, shape, _demo_only_optional_attr = None, act_scale = None): ... # for BC def __setstate__(self, state): torch._utils._set_obj_state(self, state) if "act_scale" not in self.__dict__: self.act_scale = None ``` Test Plan: python test/integration/test_load_and_run_checkpoint.py Reviewers: Subscribers: Tasks: Tags:
b81e231
to
3df4541
Compare
liangel-02
pushed a commit
that referenced
this pull request
Aug 25, 2025
Summary: After this PR, tensors inheriting from TorchAOBaseTensor will have better support BC, that is if they add some optional tensor data attribute or optional non-tensor attribute, we will still have BC without any additional changes. More Details: The BC story we are looking at is that, after we land some tensor, e.g. Int4Tensor, Float8Tensor, future changes should only add optional Tensor data attributes and optional non-Tensor attributes to the Tensor (other bigger changes will require a version bump, we need to add that too). The current TorchAOBaseTensor doesn’t support this very well. also see #2840 for a real test that adds both an optional tensor and optional non-tensor attribute to Float8Tensor, and the BC test in https://github.com/pytorch/ao/blob/main/test/integration/test_load_and_run_checkpoint.py that tests Float8Tensor does not fail. Docs for current TorchAOBaseTensor: https://github.com/pytorch/ao/blob/e6b38bb0e1477ae6aaca0a3d30de70598be43290/torchao/utils.py#L726-L731 `tensor_data_names` (List[str]): list of names of all requires tensor_data, order should match the `__init__` list of tensor subclass `optional_tensor_data_names` (List[str]): it's optional to define this field to have the additional boilerplate functions been implemented for you, but this will be need if there are some optional Tensor attributes, when defined, this will be a list of names of Tensors that can be optional `tensor_attribute_names` (List[str]): list of names of non-Tensor attributes, order should match the `__init__` list of tensor subclass, following all the `tensor_data_names` arguments and `optional_tensor_data_names` Problems: current optional_tensor_data_names is not truly optional, since it is followed by tensor_attribute_names which contains both required and optional attributes. So if we add a tensor data attribute to Tensor, it will break BC. Here are a few options: ``` class Int4Tensor(TorchAOBaseTensor): tensor_data_names = ["qdata", "scale", "zero_point"] optional_tensor_data_names = ["act_scale"] tensor_attribute_names = ["block_size", "shape", "_demo_only_optional_attr"] def __init__(self, qdata, scale, zero_point, act_scale=None, block_size=None, shape=None, _demo_only_optional_attr=None): ... # for BC def __setstate__(self, state): torch._utils._set_obj_state(self, state) if "act_scale" not in self.__dict__: self.act_scale = None ``` ``` class Int4Tensor(TorchAOBaseTensor): tensor_data_names = ["qdata", "scale", "zero_point"] optional_tensor_data_names = ["act_scale"] required_tensor_attribute_names = ["block_size", "shape"] optional_tensor_attribute_names = ["_demo_only_optional_attr"] def __init__(self, qdata, scale, zero_point, block_size, shape, act_scale=None, _demo_only_optional_attr = None): ... # for BC def __setstate__(self, state): torch._utils._set_obj_state(self, state) if "act_scale" not in self.__dict__: self.act_scale = None ``` ``` class Int4Tensor(TorchAOBaseTensor): tensor_data_names = ["qdata", "scale", "zero_point"] tensor_attribute_names = ["block_size", "shape", "_demo_only_optional_attr"] optional_tensor_data_names = ["act_scale"] def __init__(self, qdata, scale, zero_point, block_size, shape, _demo_only_optional_attr = None, act_scale = None): ... # for BC def __setstate__(self, state): torch._utils._set_obj_state(self, state) if "act_scale" not in self.__dict__: self.act_scale = None ``` Test Plan: python test/integration/test_load_and_run_checkpoint.py Reviewers: Subscribers: Tasks: Tags:
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Labels
ci-no-td
CLA Signed
This label is managed by the Facebook bot. Authors need to sign the CLA before a PR can be reviewed.
topic: for developers
Use this tag if this PR is mainly developer facing
topic: improvement
Use this tag if this PR is an improvement (doesn't fit into any of the other categories)
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Summary:
After this PR, tensors inheriting from TorchAOBaseTensor will have better support BC, that is if they add some optional tensor data attribute or optional non-tensor attribute, we will still have BC without any additional changes.
More Details: The BC story we are looking at is that, after we land some tensor, e.g. Int4Tensor, Float8Tensor, future changes should only add optional Tensor data attributes and optional non-Tensor attributes to the Tensor (other bigger changes will require a version bump, we need to add that too). The current TorchAOBaseTensor doesn’t support this very well.
also see #2840 for a real test that adds both an optional tensor and optional non-tensor attribute to Float8Tensor, and the BC test in https://github.com/pytorch/ao/blob/main/test/integration/test_load_and_run_checkpoint.py that tests Float8Tensor does not fail.
Docs for current TorchAOBaseTensor:
ao/torchao/utils.py
Lines 726 to 731 in e6b38bb
tensor_data_names
(List[str]): list of names of all requires tensor_data, order should match the__init__
list of tensor subclassoptional_tensor_data_names
(List[str]): it's optional to define this field to have the additional boilerplate functions been implemented for you, but this will be need if there are some optional Tensor attributes, when defined, this will be a list of names of Tensors that can be optionaltensor_attribute_names
(List[str]): list of names of non-Tensor attributes, order should match the__init__
list of tensor subclass, following all thetensor_data_names
arguments andoptional_tensor_data_names
Problems: current optional_tensor_data_names is not truly optional, since it is followed by tensor_attribute_names which contains both required and optional attributes. So if we add a tensor data attribute to Tensor, it will break BC.
Here are a few options:
Test Plan:
python test/integration/test_load_and_run_checkpoint.py
Reviewers:
Subscribers:
Tasks:
Tags: