A Python library for working with the Common Data Model (CDM) using PySpark.
When using a manifest based CDM export you can use the following code to load the data:
from pyspark_cdm import Manifest
from cdm.objectmodel import CdmCorpusDefinition
from cdm.storage import LocalAdapter
# Create a corpus definition.
corpus = CdmCorpusDefinition()
# Point to the root of your cdm export.
corpus.storage.mount("local", LocalAdapter(root="/dbfs/mnt/cdm/"))
# Create the manifest, and point to your entry manifest.
manifest = Manifest(corpus=corpus, path="local:/Tables/Tables.manifest.cdm.json")
# You can now inspect all the entities.
print([entity.name for entity in manifest.entities])
The package also works with the older model cdm export:
from pyspark_cdm import Manifest
from cdm.objectmodel import CdmCorpusDefinition
from cdm.storage import LocalAdapter
from cdm.storage.adls import ADLSAdapter
# Create a corpus definition.
corpus = CdmCorpusDefinition()
# Point to the root of your cdm export.
corpus.storage.mount('local', LocalAdapter(root="/dbfs/mnt/cdm/"))
# If your export contains adls paths, you need to define an adls adapter.
corpus.storage.mount('adls', ADLSAdapter(
root='/<container_name>',
hostname='<endpoint>.dfs.core.windows.net',
tenant='72f988bf-86f1-41af-91ab-2d7cd011db47',
resource='https://storage.azure.com',
))
# Create the manifest, and point to your model json file.
manifest = Manifest(corpus=corpus, path="local:/model.json")
# You can now inspect all the entities.
print([entity.name for entity in manifest.entities])
You can load data from the entities themselves.
# Load the dataframe.
df = entity.get_dataframe(spark)
# Print the number of rows.
print(df.count())
- Install Homebrew
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
- Install Java
brew install adoptopenjdk