-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpolicies.py
283 lines (199 loc) · 7.33 KB
/
policies.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import numpy as np
from collections import Counter
from statsmodels.stats.proportion import proportion_confint
from scipy.stats import beta
from utils import sample_from_scores
from utils import pop_est
from utils import discount
class AbstractPolicy(object):
def __init__(self, n, seed):
self.n = n
self.t = 0
self.seed = seed
def select(self, regions, budget):
raise NotImplementedError
def estimate_pop(self, regions, budget):
raise NotImplementedError
@property
def name(self):
raise NotImplementedError
@property
def formal_name(self):
raise NotImplementedError
class UCB(AbstractPolicy):
def __init__(self, n, gamma=1, alpha=0.16, seed=0):
super().__init__(n, seed)
#self.gap = gap
self.gamma = gamma
self.alpha = alpha
self.scores = None
def select(self, regions, budget):
if self.t == 0:
# Sample everything at least once because we don't yet have enough
# information to compute ucb.
samples = np.arange(budget) % len(regions)
self.scores = samples
self.t += 1
return Counter(samples)
self.t += 1
# Get ucb scores for each region
scores = []
#gp = min(self.gap, len(regions[0][self.name]['cases_seen']))
for i in range(len(regions)):
if discount(regions[i][self.name]['n_tested'][::-1], self.gamma) == 0:
ucb = 1.0
# if np.sum(regions[i][self.name]['n_tested'][-gp:]) == 0:
# ucb = 1.0
else:
ucb = proportion_confint(
discount(regions[i][self.name]['cases_seen'][::-1], self.gamma),
discount(regions[i][self.name]['n_tested'][::-1], self.gamma),
# np.sum(regions[i][self.name]['cases_seen'][-gp:]),
# np.sum(regions[i][self.name]['n_tested'][-gp:]),
alpha=self.alpha, method='beta'
)[1]
scores.append(ucb)
self.scores = scores # record for population estimation
return sample_from_scores(scores, budget, self.seed)
def estimate_pop(self, regions, budget):
pdf = self.scores / np.sum(self.scores)
return pop_est(regions, pdf, self.name, m=budget)
@property
def name(self):
return f'UCB_{self.alpha}'
@property
def formal_name(self):
return f'UCB, $\\alpha={self.alpha}$'
class Egreedy(AbstractPolicy):
def __init__(self, n, eps=0.1, gamma=1, seed=0):
super().__init__(n, seed)
self.eps = eps
self.gamma = gamma
def select(self, regions, budget):
pr = lambda x, y: 0 if y == 0 else x / y
i = np.argmax([
pr(
discount(regions[i][self.name]['cases_seen'][::-1], self.gamma),
discount(regions[i][self.name]['n_tested'][::-1], self.gamma)
)
for i in range(len(regions))
])
n_rand = int(budget * self.eps)
exploit = Counter({i: budget - n_rand})
np.random.seed(self.seed)
explore = Counter(np.random.choice(len(regions), size=n_rand, replace=True))
return exploit + explore
@property
def name(self):
return f'egreedy_{self.eps}'
@property
def formal_name(self):
return f'$\epsilon$-greedy, $\epsilon={self.eps}$'
class TS(AbstractPolicy):
def __init__(self, n, gamma=1, seed=0):
super().__init__(n, seed)
#self.gap = gap
self.gamma = gamma
def select(self, regions, budget):
if self.t == 0:
samples = np.arange(budget) % len(regions)
self.t += 1
return Counter(samples)
self.t += 1
# Setup params for beta dist
#gp = min(self.gap, len(regions[0][self.name]['cases_seen']))
params = [(
max(
discount(regions[i][self.name]['cases_seen'][::-1], self.gamma),
#np.sum(regions[i][self.name]['cases_seen'][-gp:]),
0.1
),
max(
discount(regions[i][self.name]['n_tested'][::-1], self.gamma) -
discount(regions[i][self.name]['cases_seen'][::-1], self.gamma),
# np.sum(regions[i][self.name]['n_tested'][-gp:]) -
# np.sum(regions[i][self.name]['cases_seen'][-gp:]),
0.1
)
) for i in range(len(regions))
]
np.random.seed(self.seed)
samples = np.array([beta.rvs(a, b, size=budget) for a, b in params])
return Counter(np.argmax(samples, axis=0))
@property
def name(self):
return 'TS'
@property
def formal_name(self):
return self.name
class Random(AbstractPolicy):
def __init__(self, n, seed=0):
super().__init__(n, seed)
def select(self, regions, budget):
np.random.seed(self.seed)
return Counter(
np.random.choice(
self.n, size=budget, replace=True
)
)
def estimate_pop(self, regions, budget):
ratio = lambda x, y: 0 if y == 0 else x/y
return np.sum([
ratio(v[self.name]['cases_seen'][-1], v[self.name]['n_tested'][-1])
* v['N'] for v in regions.values()
])
@property
def name(self):
return 'Random'
@property
def formal_name(self):
return self.name
class Exp3(AbstractPolicy):
def __init__(self, n, gamma=1, eps=0.1, seed=0):
super().__init__(n, seed)
self.eps = eps
self.gamma = gamma
self.w = [1 / self.n for _ in range(self.n)]
self.prev_sample = []
def select(self, regions, budget):
# First we update from what we saw previously
if self.t > 0:
self._update(regions)
self.t += 1
# Define probability distribution
probs = self._pdf()
# sample and record choices
np.random.seed(self.seed)
sample = Counter(
np.random.choice(self.n, size=budget, p=probs)
)
self.prev_sample.append(sample)
return Counter(sample)
def _pdf(self):
#print(self.w)
#self.w = np.nan_to_num(self.w, posinf=np.max([w for w in self.w if not np.isinf(w)]))
#self.w = [np.max(w, 10**6) for w in self.w]
#print(self.w)
sum_w = np.sum(self.w)
probs = [
(1-self.eps) * (self.w[i] / sum_w) + self.eps / self.n
for i in range(self.n)
]
return probs
def _update(self, regions):
probs = self._pdf()
for i in range(self.n):
seen = regions[i][self.name]['cases_seen']
reward = discount(seen[::-1], self.gamma)
x = reward / probs[i]
wi = self.w[i] * np.exp(self.eps*x / self.n)
self.w[i] = wi
def estimate_pop(self, regions, budget):
pdf = self._pdf()
return pop_est(regions, pdf, self.name, m=budget)
@property
def name(self):
return f'exp3_{self.eps}'
@property
def formal_name(self):
return f'Exp3, $\epsilon={self.eps}$'