Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support for CoVE's deployment model 3 #3

Closed

Conversation

wojciechozga
Copy link

@wojciechozga wojciechozga commented Jun 19, 2024

This PR adds support for the deployment model 3 of the RISC-V CoVE spec. It adds the missing API call in COVH ABI and implementation of single-step TEE VM (TVM) creation. It modifies the architecture-dependent KVM code to support deployment models in which: (1) host runs in HS mode, (2) TEE security monitor (TSM) or hardware do not support RISC-V AIA, (3) TSM or hardware do not support dynamic page conversion.

Promotion to TVM (guest side)
At the guest side, request isolation against the hypervisor early in the kernel boot process only if the kernel was built with the CONFIG_RISCV_COVE_GUEST_PROMOTE command-line kernel parameter. CoVE guest images created in the multi-step creation process should not use this parameter.

Promotion to TVM (host side)
At the host side, preload VM pages into memory, fill the NACL shared memory with boot vcpu state, and reflect the promote_to_tvm() call to the TSM. Support CoVE implementations that do not support dynamic page conversion. A TSM that does not support dynamic page conversion does not require the donation of pages to store VCPU state in confidential memory.

Support sharing pages with a hypervisor in an environment where dynamic page conversion is not supported.
When a single share_memory_region() call for a memory region that contains multiple 4KiB pages fails, execute multiple 4KiB share_memory_region() calls until the request is completed. (See deployment model 3 in the CoVE spec.)

Support the use of NACL in CoVE for KVM running in HS mode.
Utilize the correct NACL features by testing whether a feature required for NACL exploitation in nested virtualized environments is present. If nested virtualization is not present, use only the NACL setup_shared_memory() ABI otherwise use the entire NACL ABI.Mandatory NACL support for CoVE This commit mandates presence of NACL extension for KVM's CoVE support. To support deployments running host in HS or VS mode, KVM checks presence of specific NACL features. Specifically, CoVE deployments with host running in HS mode must implement only NACL setup_shared_memory() and no NACL feature. CoVE deployments with host running in VS mode must, however, implement all required NACL features.

Enable CoVE guests to run in an environment that does not have AIA.
Detect AIA presence by discovering that the TEE security monitor (TSM) implements the SBI COVI extension. If AIA is not present, inject external interrupts using the HVIP register when resuming execution of a virtual processor via the COVH tvm_vcpu_run() call.

TSM Capabilities
Discover TSM capabilities introduced as part of the GetTsmInfo call with the version 0.7 of the CoVE spec.

Local attestation
Support placement of TEE attestation payload inside the Linux kernel image and exposing its address during promotion to TVM.

@wojciechozga
Copy link
Author

As discussed on last Monday, we should expose TSM's capabilities to the host. Based on them, the host can provide different behavior when creating and managing TVMs. In this PR, the host recognizes TSM's capabilities based on, for example, presence of COVI extension. Once capabilities become part of the tsm_info structure in the CoVE spec, KVM CoVE implementation should be modified accordingly.

@atishp04
Copy link
Contributor

@wojciechozga : Anup agreed to host the staging repo in kvm-riscv. I think it would better to merge these patches directly there once you update these with the items discussed last time. Wdyt ?

@wojciechozga
Copy link
Author

yes, we can do it that way!

@@ -267,6 +268,7 @@ static void __init parse_dtb(void)
void __init setup_arch(char **cmdline_p)
{
parse_dtb();
promote_to_cove_guest();
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can you invoke it after sbi_init and riscv_cove_sbi_init so that this can be called only if is_cove_guest is true

Copy link
Author

@wojciechozga wojciechozga Oct 16, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The promote call might actually move to different place, i.e., head.S in _start_kernel. Like this, the kernel requests the promotion before it touches the stack or heap, so there is no runtime state associated with the execution. Consequently the TVM's memory at the time of promotion equals the linux kernel image, so integrity measurements are easier to calculate.

The approach presented in this patch was intended to match what OpenPower PEF did. But in such a case we would need to do a few additional tricks (like PEF in powerpc part of Linux kernel) that would unnecessarily complicate the implementation. My team believes that we might try a simpler solution, but I am interested in learning your opinion and the opinion of the community. Guerney and I will present details on local attestation during RV CoVE TG on November 5th.

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The commit #fb1b6080a118b70305be6bb1e0243a5e1b119e05 implements the simpler approach to VM promotion, which I mentioned above.

Copy link
Contributor

@atishp04 atishp04 Oct 17, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

If you want to convert so early, why not just invoke it from the VMM if the kernel supports it ? The VMM can create a single step or multi-step TVM. It should be even simpler and you don't have to bounce the PROMOTE_TVM ecalls from the TVM->TSM->HOST.

Copy link
Author

@wojciechozga wojciechozga Oct 23, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thank you for your comments and suggestions.

There are a few advantages of implementing promotion inside the kernel that early. (1) TSM can move just kernel+initrd+fdt to confidential memory, keeping entire boot firmware / rom etc out of TCB, (2) proposed solution is then VMM-independent, (3) implementation is relatively simple even though not rich in features, (4) reference measurements are easy to calculate since there is no runtime state we have to care about.

There are alternatives and every solution comes with its own tradeoffs. Doing promotion before the proposed point of time (e.g., in VMM or early firmware) will include firmware in TCB and will be vmm- or firmware-specific. Doing promotion after the proposed time will result in inclusion of runtime state in TCB and will require calculating the measurements of a VM's snapshot at given point of time when promotion occurs.

In OpenPOWER PEF (see powerpc arch code in Linux kernel) we did it also that early in the kernel boot. Specifically inside PROM. The _start procedure (in arch/powerpc/kernel/head_book3s_32.S) calls prom_init, which calls setup_secure_guest (arch/powerpc/kernel/prom_init.c) if the correct boot arg param is set. I am not aware of any PROM-like code in Riscv-dependent code, that is why I placed it directly in arch/riscv/kernel/head.S.

In Secure Execution for IBM Z (see s390 arch code in Linux kernel) we did it differently since the business requirements were different. We wanted to provide confidentiality and integrity of the TVM's Linux kernel and initrd.

Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Deployment model 3 is primarily aimed at embedded systems although it can also be used by cloud or other systems. Putting the execution in the kernel as proposed is a minimal code approach. This approach will fit better into the development cycles for embedded systems. The tooling to generate the Attestation Payload will be simpler. There is no need to actually run the VM prior to generating the payload. If the VMM does not support confidential computing the call will fail which is not a problem because no secrets will be exposed because VM will not have access to the key that unlocks its disk. This approach gives the VM creator the ability to lock their TVM to a specific set of hardware. To do this requires that each platform have unique information, such as a serial number, that is incorporated into the attestation. The TVM can be locked to a single platform or a set of platforms, depending on the hardware environment. This is also important for embedded systems.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@wojciechozga Thanks for sharing the slides for the Nov 5th meeting. I understand the local attestation requirement. I have couple of questions:

  1. However, I wanted to understand what type of guest firmware you typically run on an embedded systems ? It can just boot directly similar to what we do it in kvm ?
  2. Why it is a problematic to make VMM aware of TAP and pass the TAP to the VMM ? It can be part of the guest image that vmm can load it.

We can discuss the details in Nov 5th call if you like as well.

Copy link
Author

@wojciechozga wojciechozga Nov 4, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Guest content is system-specific. It may be a guest-level "bare-metal" application, a directly booted kernel, a full-fledged OS, or a single-tasking system with or without boot firmware. It is the TVM creator's decision on how to structure the TVM, depending on system design requirements. It is important for RISC-V CoVE to enable different use cases, also because of legacy processes to build and certify systems. The TVM owner should decide when and what type of attestation to perform—whether promotion should happen in firmware, kernel, or operating system, and whether it should be local or remote attestation.

Leaving the decision on when to execute the promotion call allows a TVM creator to decide if firmware should be part of the TCB and whether the guest kernel's code should be confidential, among other considerations. For example, if a VM requests promotion during kernel execution, the TSM can exclude rom reset vec and firmware from the TCB. Conversely, if the initial firmware is intended to be part of the TCB and to retrieve a key to decrypt the kernel, promotion occurs in firmware.

Implementing this level of granularity within a VMM presents challenges, as it would require trapping the VM’s execution at specific instructions based on some policy. Moreover, making a VMM aware of the TAP would necessitate modifications to the VMM itself, potentially reducing the solution's portability across various VMM implementations. The proposed separation of concerns simplifies the VMM's role, enabling more flexible development and evolution of the attestation mechanisms within the TVM.

@atishp04, let me know what you think.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Just to clarify: I was not suggesting to trap any VM's execution at any certain stage and promote it to TVM.
I was suggesting to start the TVM in the single step boot mode at the beginning itself. No change in promote_to_tvm API.

Instead of this path
VM->(promote_to_tvm)->TSM traps and forward ->Host->promote_to_tvm (COVH)->TSM

We can just simply start the TVM. Are there any issue with this execution model ?
VMM->host (start TVM in single_step_mode)

The flexibility you mentioned still exists for anybody to implement in a different way. I was mainly concerned about the odd boot flow for a Linux based TVM. My earlier assumption was a Linux VM can be promoted to TVM at any point during the boot. If it is supposed to promoted right after the boot, VMM may as well tell the host to start a single step TVM. I understand that the firmware needs to be part of the TCB in this case but I am not sure if we need that for this use case.

We will anyways have have VMM modification for CoVE for other models. So adding another ABI for single step booting shouldn't be a issue.

Copy link
Author

@wojciechozga wojciechozga Nov 5, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@atishp04 thanks for the explanation.

The current path is different that what you described. The VM traps into Host, which reflects the call to TSM:
VM->(promote_to_tvm VM>KVM ABI)->Host->promote_to_tvm (COVH)->TSM

If I understood correctly, you propose that VMM+Host do the promotion of a Linux VM that hasn't executed yet, right?
VMM->(single_step_mode VMM>KVM ABI)->Host->promote_to_tvm (COVH)->TSM

My understanding is that your motivation to shift promotion call from VM to VMM is that it sounds odd to call promote_to_tvm ABI early in Linux kernel while the same effect could be achieved by doing promotion before the VM execution, right? In Linux kernel's powerpc (Openpower PEF) we promote TVMs the same way as proposed now for risc-v, so within first instructions after entering the Linux kernel code.

I agree that we can call promote_to_tvm before kernel execution (what you propose) but we can also do it during early kernel boot (current proposal) or later during runtime (this will be more like a snapshots of a running system). Starting a TVM in a single-step-mode would be ok for directly boot Linux kernel but would not support use cases with firmware that is not intended to be in TCB. Also, this approach would require modification of every VMM. These are some tradeoffs we can discuss today during the call. Do you know what are the plans for VMM modifications? Do you know which VMMs are expected to get support for CoVE (qemu, kvmtool, firecracker)?

Some other question I have is how could we make a VMM aware of TAP? Should we pass it as an extra argument or should VMM somehow extract TAP address from the VM image? Current approach embeds TAP inside the Linux kernel image and Linux kernel is aware about the TAP's address so it can expose it during the promote call.

arch/riscv/kvm/cove.c Outdated Show resolved Hide resolved
arch/riscv/kvm/cove.c Outdated Show resolved Hide resolved
@wojciechozga
Copy link
Author

wojciechozga commented Oct 17, 2024

@atishp04 thank you for valuable comments and hints. I addressed the comments and pushed the improved version of these patches.

mv s2, a1
li a7, COVE_PROMOTE_SBI_EXT_ID
li a6, COVE_PROMOTE_SBI_FID
mv a0, a1
Copy link
Contributor

@atishp04 atishp04 Oct 17, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We can't invoke SBI calls like this without checks. It will just fail if the higher privilege mode system doesn't support it.

Copy link
Author

@wojciechozga wojciechozga Oct 23, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks for your comment. This piece of code is compiled only for non-M mode system (HS/VS mode) compiled with dedicated kernel build flag CONFIG_RISCV_COVE_GUEST_PROMOTE, so won't execute for a M-mode kernel or a regular COVE guest created in a multi-step fashion. If the more privileged mode doesn't support promote_to_tvm call, then it will return an SBI error reflected in a0/a1 gprs. We can ignore the SBI result here the same as we would do it at any later guest's execution stage. This is because the result of promotion is reflected via attestation. The VM that failed the promotion will continue as a regular VM and won't retrieve secrets from attestation.

only if the kernel was built with the CONFIG_RISCV_COVE_GUEST_PROMOTE
build parameter. CoVE guest images created in the multi-step creation
process should not use this parameter.

Signed-off-by: Wojciech Ozga <[email protected]>
…ic page

conversion is not supported. When a single share_memory_region() call for a
memory region that contains multiple 4KiB pages fails, execute multiple 4KiB
share_memory_region() calls until the request is completed. (See deployment
model 3 in the CoVE spec.)

Signed-off-by: Wojciech Ozga <[email protected]>
…he correct

NACL features by testing whether a feature required for NACL exploitation in
nested virtualized environments is present. If nested virtualization is not
present, use only the NACL setup_shared_memory() ABI otherwise use the entire
NACL ABI.

Signed-off-by: Wojciech Ozga <[email protected]>
…etect AIA

presence by discovering that the TEE security monitor (TSM) supports AIA
capability. If AIA is not present, inject external interrupts using the
HVIP register when resuming execution of a virtual processor via the COVH
tvm_vcpu_run() call.

Signed-off-by: Wojciech Ozga <[email protected]>
…d in a

single-step. Preload VM pages into memory, fill the NACL shared memory with
boot vcpu state, and reflect the promote_to_tvm() call to the TSM. Support CoVE
implementations that do not support dynamic page conversion.  A TSM that does
not support dynamic page conversion does not require the donation of pages to
store VCPU state in confidential memory.

Signed-off-by: Wojciech Ozga <[email protected]>
…e for TVM Attestation

Payload (TAP). Pass the physical address of the TAP when requesting to be promoted to a
TVM.

Signed-off-by: Wojciech Ozga <[email protected]>
clementleger pushed a commit that referenced this pull request Dec 5, 2024
The function blk_revalidate_disk_zones() calls the function
disk_update_zone_resources() after freezing the device queue. In turn,
disk_update_zone_resources() calls queue_limits_start_update() which
takes a queue limits mutex lock, resulting in the ordering:
q->q_usage_counter check -> q->limits_lock. However, the usual ordering
is to always take a queue limit lock before freezing the queue to commit
the limits updates, e.g., the code pattern:

lim = queue_limits_start_update(q);
...
blk_mq_freeze_queue(q);
ret = queue_limits_commit_update(q, &lim);
blk_mq_unfreeze_queue(q);

Thus, blk_revalidate_disk_zones() introduces a potential circular
locking dependency deadlock that lockdep sometimes catches with the
splat:

[   51.934109] ======================================================
[   51.935916] WARNING: possible circular locking dependency detected
[   51.937561] 6.12.0+ #2107 Not tainted
[   51.938648] ------------------------------------------------------
[   51.940351] kworker/u16:4/157 is trying to acquire lock:
[   51.941805] ffff9fff0aa0bea8 (&q->limits_lock){+.+.}-{4:4}, at: disk_update_zone_resources+0x86/0x170
[   51.944314]
               but task is already holding lock:
[   51.945688] ffff9fff0aa0b890 (&q->q_usage_counter(queue)#3){++++}-{0:0}, at: blk_revalidate_disk_zones+0x15f/0x340
[   51.948527]
               which lock already depends on the new lock.

[   51.951296]
               the existing dependency chain (in reverse order) is:
[   51.953708]
               -> #1 (&q->q_usage_counter(queue)#3){++++}-{0:0}:
[   51.956131]        blk_queue_enter+0x1c9/0x1e0
[   51.957290]        blk_mq_alloc_request+0x187/0x2a0
[   51.958365]        scsi_execute_cmd+0x78/0x490 [scsi_mod]
[   51.959514]        read_capacity_16+0x111/0x410 [sd_mod]
[   51.960693]        sd_revalidate_disk.isra.0+0x872/0x3240 [sd_mod]
[   51.962004]        sd_probe+0x2d7/0x520 [sd_mod]
[   51.962993]        really_probe+0xd5/0x330
[   51.963898]        __driver_probe_device+0x78/0x110
[   51.964925]        driver_probe_device+0x1f/0xa0
[   51.965916]        __driver_attach_async_helper+0x60/0xe0
[   51.967017]        async_run_entry_fn+0x2e/0x140
[   51.968004]        process_one_work+0x21f/0x5a0
[   51.968987]        worker_thread+0x1dc/0x3c0
[   51.969868]        kthread+0xe0/0x110
[   51.970377]        ret_from_fork+0x31/0x50
[   51.970983]        ret_from_fork_asm+0x11/0x20
[   51.971587]
               -> #0 (&q->limits_lock){+.+.}-{4:4}:
[   51.972479]        __lock_acquire+0x1337/0x2130
[   51.973133]        lock_acquire+0xc5/0x2d0
[   51.973691]        __mutex_lock+0xda/0xcf0
[   51.974300]        disk_update_zone_resources+0x86/0x170
[   51.975032]        blk_revalidate_disk_zones+0x16c/0x340
[   51.975740]        sd_zbc_revalidate_zones+0x73/0x160 [sd_mod]
[   51.976524]        sd_revalidate_disk.isra.0+0x465/0x3240 [sd_mod]
[   51.977824]        sd_probe+0x2d7/0x520 [sd_mod]
[   51.978917]        really_probe+0xd5/0x330
[   51.979915]        __driver_probe_device+0x78/0x110
[   51.981047]        driver_probe_device+0x1f/0xa0
[   51.982143]        __driver_attach_async_helper+0x60/0xe0
[   51.983282]        async_run_entry_fn+0x2e/0x140
[   51.984319]        process_one_work+0x21f/0x5a0
[   51.985873]        worker_thread+0x1dc/0x3c0
[   51.987289]        kthread+0xe0/0x110
[   51.988546]        ret_from_fork+0x31/0x50
[   51.989926]        ret_from_fork_asm+0x11/0x20
[   51.991376]
               other info that might help us debug this:

[   51.994127]  Possible unsafe locking scenario:

[   51.995651]        CPU0                    CPU1
[   51.996694]        ----                    ----
[   51.997716]   lock(&q->q_usage_counter(queue)#3);
[   51.998817]                                lock(&q->limits_lock);
[   52.000043]                                lock(&q->q_usage_counter(queue)#3);
[   52.001638]   lock(&q->limits_lock);
[   52.002485]
                *** DEADLOCK ***

Prevent this issue by moving the calls to blk_mq_freeze_queue() and
blk_mq_unfreeze_queue() around the call to queue_limits_commit_update()
in disk_update_zone_resources(). In case of revalidation failure, the
call to disk_free_zone_resources() in blk_revalidate_disk_zones()
is still done with the queue frozen as before.

Fixes: 843283e ("block: Fake max open zones limit when there is no limit")
Cc: [email protected]
Signed-off-by: Damien Le Moal <[email protected]>
Reviewed-by: Christoph Hellwig <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Jens Axboe <[email protected]>
clementleger pushed a commit that referenced this pull request Dec 9, 2024
Kernel will hang on destroy admin_q while we create ctrl failed, such
as following calltrace:

PID: 23644    TASK: ff2d52b40f439fc0  CPU: 2    COMMAND: "nvme"
 #0 [ff61d23de260fb78] __schedule at ffffffff8323bc15
 #1 [ff61d23de260fc08] schedule at ffffffff8323c014
 #2 [ff61d23de260fc28] blk_mq_freeze_queue_wait at ffffffff82a3dba1
 #3 [ff61d23de260fc78] blk_freeze_queue at ffffffff82a4113a
 #4 [ff61d23de260fc90] blk_cleanup_queue at ffffffff82a33006
 #5 [ff61d23de260fcb0] nvme_rdma_destroy_admin_queue at ffffffffc12686ce
 #6 [ff61d23de260fcc8] nvme_rdma_setup_ctrl at ffffffffc1268ced
 #7 [ff61d23de260fd28] nvme_rdma_create_ctrl at ffffffffc126919b
 #8 [ff61d23de260fd68] nvmf_dev_write at ffffffffc024f362
 #9 [ff61d23de260fe38] vfs_write at ffffffff827d5f25
    RIP: 00007fda7891d574  RSP: 00007ffe2ef06958  RFLAGS: 00000202
    RAX: ffffffffffffffda  RBX: 000055e8122a4d90  RCX: 00007fda7891d574
    RDX: 000000000000012b  RSI: 000055e8122a4d90  RDI: 0000000000000004
    RBP: 00007ffe2ef079c0   R8: 000000000000012b   R9: 000055e8122a4d90
    R10: 0000000000000000  R11: 0000000000000202  R12: 0000000000000004
    R13: 000055e8122923c0  R14: 000000000000012b  R15: 00007fda78a54500
    ORIG_RAX: 0000000000000001  CS: 0033  SS: 002b

This due to we have quiesced admi_q before cancel requests, but forgot
to unquiesce before destroy it, as a result we fail to drain the
pending requests, and hang on blk_mq_freeze_queue_wait() forever. Here
try to reuse nvme_rdma_teardown_admin_queue() to fix this issue and
simplify the code.

Fixes: 958dc1d ("nvme-rdma: add clean action for failed reconnection")
Reported-by: Yingfu.zhou <[email protected]>
Signed-off-by: Chunguang.xu <[email protected]>
Signed-off-by: Yue.zhao <[email protected]>
Reviewed-by: Christoph Hellwig <[email protected]>
Reviewed-by: Hannes Reinecke <[email protected]>
Signed-off-by: Keith Busch <[email protected]>
clementleger pushed a commit that referenced this pull request Dec 9, 2024
Konstantin Shkolnyy says:

====================
vsock/test: fix wrong setsockopt() parameters

Parameters were created using wrong C types, which caused them to be of
wrong size on some architectures, causing problems.

The problem with SO_RCVLOWAT was found on s390 (big endian), while x86-64
didn't show it. After the fix, all tests pass on s390.
Then Stefano Garzarella pointed out that SO_VM_SOCKETS_* calls might have
a similar problem, which turned out to be true, hence, the second patch.

Changes for v8:
- Fix whitespace warnings from "checkpatch.pl --strict"
- Add maintainers to Cc:
Changes for v7:
- Rebase on top of https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.git
- Add the "net" tags to the subjects
Changes for v6:
- rework the patch #3 to avoid creating a new file for new functions,
and exclude vsock_perf from calling the new functions.
- add "Reviewed-by:" to the patch #2.
Changes for v5:
- in the patch #2 replace the introduced uint64_t with unsigned long long
to match documentation
- add a patch #3 that verifies every setsockopt() call.
Changes for v4:
- add "Reviewed-by:" to the first patch, and add a second patch fixing
SO_VM_SOCKETS_* calls, which depends on the first one (hence, it's now
a patch series.)
Changes for v3:
- fix the same problem in vsock_perf and update commit message
Changes for v2:
- add "Fixes:" lines to the commit message
====================

Link: https://patch.msgid.link/[email protected]
Signed-off-by: Paolo Abeni <[email protected]>
clementleger pushed a commit that referenced this pull request Dec 9, 2024
Hou Tao says:

====================
This patch set fixes several issues for LPM trie. These issues were
found during adding new test cases or were reported by syzbot.

The patch set is structured as follows:

Patch #1~#2 are clean-ups for lpm_trie_update_elem().
Patch #3 handles BPF_EXIST and BPF_NOEXIST correctly for LPM trie.
Patch #4 fixes the accounting of n_entries when doing in-place update.
Patch #5 fixes the exact match condition in trie_get_next_key() and it
may skip keys when the passed key is not found in the map.
Patch #6~#7 switch from kmalloc() to bpf memory allocator for LPM trie
to fix several lock order warnings reported by syzbot. It also enables
raw_spinlock_t for LPM trie again. After these changes, the LPM trie will
be closer to being usable in any context (though the reentrance check of
trie->lock is still missing, but it is on my todo list).
Patch #8: move test_lpm_map to map_tests to make it run regularly.
Patch #9: add test cases for the issues fixed by patch #3~#5.

Please see individual patches for more details. Comments are always
welcome.

Change Log:
v3:
  * patch #2: remove the unnecessary NULL-init for im_node
  * patch #6: alloc the leaf node before disabling IRQ to low
    the possibility of -ENOMEM when leaf_size is large; Free
    these nodes outside the trie lock (Suggested by Alexei)
  * collect review and ack tags (Thanks for Toke & Daniel)

v2: https://lore.kernel.org/bpf/[email protected]/
  * collect review tags (Thanks for Toke)
  * drop "Add bpf_mem_cache_is_mergeable() helper" patch
  * patch #3~#4: add fix tag
  * patch #4: rename the helper to trie_check_add_elem() and increase
    n_entries in it.
  * patch #6: use one bpf mem allocator and update commit message to
    clarify that using bpf mem allocator is more appropriate.
  * patch #7: update commit message to add the possible max running time
    for update operation.
  * patch #9: update commit message to specify the purpose of these test
    cases.

v1: https://lore.kernel.org/bpf/[email protected]/
====================

Link: https://lore.kernel.org/all/[email protected]/
Signed-off-by: Alexei Starovoitov <[email protected]>
@wojciechozga
Copy link
Author

wojciechozga commented Dec 19, 2024

I close this PR because I opened PR4, which comes with support for single-step TVM creation initiated from VMM.

clementleger pushed a commit that referenced this pull request Jan 3, 2025
Its used from trace__run(), for the 'perf trace' live mode, i.e. its
strace-like, non-perf.data file processing mode, the most common one.

The trace__run() function will set trace->host using machine__new_host()
that is supposed to give a machine instance representing the running
machine, and since we'll use perf_env__arch_strerrno() to get the right
errno -> string table, we need to use machine->env, so initialize it in
machine__new_host().

Before the patch:

  (gdb) run trace --errno-summary -a sleep 1
  <SNIP>
   Summary of events:

   gvfs-afc-volume (3187), 2 events, 0.0%

     syscall            calls  errors  total       min       avg       max       stddev
                                       (msec)    (msec)    (msec)    (msec)        (%)
     --------------- --------  ------ -------- --------- --------- ---------     ------
     pselect6               1      0     0.000     0.000     0.000     0.000      0.00%

   GUsbEventThread (3519), 2 events, 0.0%

     syscall            calls  errors  total       min       avg       max       stddev
                                       (msec)    (msec)    (msec)    (msec)        (%)
     --------------- --------  ------ -------- --------- --------- ---------     ------
     poll                   1      0     0.000     0.000     0.000     0.000      0.00%
  <SNIP>
  Program received signal SIGSEGV, Segmentation fault.
  0x00000000005caba0 in perf_env__arch_strerrno (env=0x0, err=110) at util/env.c:478
  478		if (env->arch_strerrno == NULL)
  (gdb) bt
  #0  0x00000000005caba0 in perf_env__arch_strerrno (env=0x0, err=110) at util/env.c:478
  #1  0x00000000004b75d2 in thread__dump_stats (ttrace=0x14f58f0, trace=0x7fffffffa5b0, fp=0x7ffff6ff74e0 <_IO_2_1_stderr_>) at builtin-trace.c:4673
  #2  0x00000000004b78bf in trace__fprintf_thread (fp=0x7ffff6ff74e0 <_IO_2_1_stderr_>, thread=0x10fa0b0, trace=0x7fffffffa5b0) at builtin-trace.c:4708
  #3  0x00000000004b7ad9 in trace__fprintf_thread_summary (trace=0x7fffffffa5b0, fp=0x7ffff6ff74e0 <_IO_2_1_stderr_>) at builtin-trace.c:4747
  #4  0x00000000004b656e in trace__run (trace=0x7fffffffa5b0, argc=2, argv=0x7fffffffde60) at builtin-trace.c:4456
  #5  0x00000000004ba43e in cmd_trace (argc=2, argv=0x7fffffffde60) at builtin-trace.c:5487
  #6  0x00000000004c0414 in run_builtin (p=0xec3068 <commands+648>, argc=5, argv=0x7fffffffde60) at perf.c:351
  #7  0x00000000004c06bb in handle_internal_command (argc=5, argv=0x7fffffffde60) at perf.c:404
  #8  0x00000000004c0814 in run_argv (argcp=0x7fffffffdc4c, argv=0x7fffffffdc40) at perf.c:448
  #9  0x00000000004c0b5d in main (argc=5, argv=0x7fffffffde60) at perf.c:560
  (gdb)

After:

  root@number:~# perf trace -a --errno-summary sleep 1
  <SNIP>
     pw-data-loop (2685), 1410 events, 16.0%

     syscall            calls  errors  total       min       avg       max       stddev
                                       (msec)    (msec)    (msec)    (msec)        (%)
     --------------- --------  ------ -------- --------- --------- ---------     ------
     epoll_wait           188      0   983.428     0.000     5.231    15.595      8.68%
     ioctl                 94      0     0.811     0.004     0.009     0.016      2.82%
     read                 188      0     0.322     0.001     0.002     0.006      5.15%
     write                141      0     0.280     0.001     0.002     0.018      8.39%
     timerfd_settime       94      0     0.138     0.001     0.001     0.007      6.47%

   gnome-control-c (179406), 1848 events, 20.9%

     syscall            calls  errors  total       min       avg       max       stddev
                                       (msec)    (msec)    (msec)    (msec)        (%)
     --------------- --------  ------ -------- --------- --------- ---------     ------
     poll                 222      0   959.577     0.000     4.322    21.414     11.40%
     recvmsg              150      0     0.539     0.001     0.004     0.013      5.12%
     write                300      0     0.442     0.001     0.001     0.007      3.29%
     read                 150      0     0.183     0.001     0.001     0.009      5.53%
     getpid               102      0     0.101     0.000     0.001     0.008      7.82%

  root@number:~#

Fixes: 54373b5 ("perf env: Introduce perf_env__arch_strerrno()")
Reported-by: Veronika Molnarova <[email protected]>
Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
Acked-by: Veronika Molnarova <[email protected]>
Acked-by: Michael Petlan <[email protected]>
Tested-by: Michael Petlan <[email protected]>
Link: https://lore.kernel.org/r/Z0XffUgNSv_9OjOi@x1
Signed-off-by: Namhyung Kim <[email protected]>
clementleger pushed a commit that referenced this pull request Jan 3, 2025
This reworks hci_cb_list to not use mutex hci_cb_list_lock to avoid bugs
like the bellow:

BUG: sleeping function called from invalid context at kernel/locking/mutex.c:585
in_atomic(): 0, irqs_disabled(): 0, non_block: 0, pid: 5070, name: kworker/u9:2
preempt_count: 0, expected: 0
RCU nest depth: 1, expected: 0
4 locks held by kworker/u9:2/5070:
 #0: ffff888015be3948 ((wq_completion)hci0#2){+.+.}-{0:0}, at: process_one_work kernel/workqueue.c:3229 [inline]
 #0: ffff888015be3948 ((wq_completion)hci0#2){+.+.}-{0:0}, at: process_scheduled_works+0x8e0/0x1770 kernel/workqueue.c:3335
 #1: ffffc90003b6fd00 ((work_completion)(&hdev->rx_work)){+.+.}-{0:0}, at: process_one_work kernel/workqueue.c:3230 [inline]
 #1: ffffc90003b6fd00 ((work_completion)(&hdev->rx_work)){+.+.}-{0:0}, at: process_scheduled_works+0x91b/0x1770 kernel/workqueue.c:3335
 #2: ffff8880665d0078 (&hdev->lock){+.+.}-{3:3}, at: hci_le_create_big_complete_evt+0xcf/0xae0 net/bluetooth/hci_event.c:6914
 #3: ffffffff8e132020 (rcu_read_lock){....}-{1:2}, at: rcu_lock_acquire include/linux/rcupdate.h:298 [inline]
 #3: ffffffff8e132020 (rcu_read_lock){....}-{1:2}, at: rcu_read_lock include/linux/rcupdate.h:750 [inline]
 #3: ffffffff8e132020 (rcu_read_lock){....}-{1:2}, at: hci_le_create_big_complete_evt+0xdb/0xae0 net/bluetooth/hci_event.c:6915
CPU: 0 PID: 5070 Comm: kworker/u9:2 Not tainted 6.8.0-syzkaller-08073-g480e035fc4c7 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024
Workqueue: hci0 hci_rx_work
Call Trace:
 <TASK>
 __dump_stack lib/dump_stack.c:88 [inline]
 dump_stack_lvl+0x241/0x360 lib/dump_stack.c:114
 __might_resched+0x5d4/0x780 kernel/sched/core.c:10187
 __mutex_lock_common kernel/locking/mutex.c:585 [inline]
 __mutex_lock+0xc1/0xd70 kernel/locking/mutex.c:752
 hci_connect_cfm include/net/bluetooth/hci_core.h:2004 [inline]
 hci_le_create_big_complete_evt+0x3d9/0xae0 net/bluetooth/hci_event.c:6939
 hci_event_func net/bluetooth/hci_event.c:7514 [inline]
 hci_event_packet+0xa53/0x1540 net/bluetooth/hci_event.c:7569
 hci_rx_work+0x3e8/0xca0 net/bluetooth/hci_core.c:4171
 process_one_work kernel/workqueue.c:3254 [inline]
 process_scheduled_works+0xa00/0x1770 kernel/workqueue.c:3335
 worker_thread+0x86d/0xd70 kernel/workqueue.c:3416
 kthread+0x2f0/0x390 kernel/kthread.c:388
 ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:243
 </TASK>

Reported-by: [email protected]
Tested-by: [email protected]
Closes: https://syzkaller.appspot.com/bug?extid=2fb0835e0c9cefc34614
Signed-off-by: Luiz Augusto von Dentz <[email protected]>
clementleger pushed a commit that referenced this pull request Jan 3, 2025
This fixes the circular locking dependency warning below, by
releasing the socket lock before enterning iso_listen_bis, to
avoid any potential deadlock with hdev lock.

[   75.307983] ======================================================
[   75.307984] WARNING: possible circular locking dependency detected
[   75.307985] 6.12.0-rc6+ #22 Not tainted
[   75.307987] ------------------------------------------------------
[   75.307987] kworker/u81:2/2623 is trying to acquire lock:
[   75.307988] ffff8fde1769da58 (sk_lock-AF_BLUETOOTH-BTPROTO_ISO)
               at: iso_connect_cfm+0x253/0x840 [bluetooth]
[   75.308021]
               but task is already holding lock:
[   75.308022] ffff8fdd61a10078 (&hdev->lock)
               at: hci_le_per_adv_report_evt+0x47/0x2f0 [bluetooth]
[   75.308053]
               which lock already depends on the new lock.

[   75.308054]
               the existing dependency chain (in reverse order) is:
[   75.308055]
               -> #1 (&hdev->lock){+.+.}-{3:3}:
[   75.308057]        __mutex_lock+0xad/0xc50
[   75.308061]        mutex_lock_nested+0x1b/0x30
[   75.308063]        iso_sock_listen+0x143/0x5c0 [bluetooth]
[   75.308085]        __sys_listen_socket+0x49/0x60
[   75.308088]        __x64_sys_listen+0x4c/0x90
[   75.308090]        x64_sys_call+0x2517/0x25f0
[   75.308092]        do_syscall_64+0x87/0x150
[   75.308095]        entry_SYSCALL_64_after_hwframe+0x76/0x7e
[   75.308098]
               -> #0 (sk_lock-AF_BLUETOOTH-BTPROTO_ISO){+.+.}-{0:0}:
[   75.308100]        __lock_acquire+0x155e/0x25f0
[   75.308103]        lock_acquire+0xc9/0x300
[   75.308105]        lock_sock_nested+0x32/0x90
[   75.308107]        iso_connect_cfm+0x253/0x840 [bluetooth]
[   75.308128]        hci_connect_cfm+0x6c/0x190 [bluetooth]
[   75.308155]        hci_le_per_adv_report_evt+0x27b/0x2f0 [bluetooth]
[   75.308180]        hci_le_meta_evt+0xe7/0x200 [bluetooth]
[   75.308206]        hci_event_packet+0x21f/0x5c0 [bluetooth]
[   75.308230]        hci_rx_work+0x3ae/0xb10 [bluetooth]
[   75.308254]        process_one_work+0x212/0x740
[   75.308256]        worker_thread+0x1bd/0x3a0
[   75.308258]        kthread+0xe4/0x120
[   75.308259]        ret_from_fork+0x44/0x70
[   75.308261]        ret_from_fork_asm+0x1a/0x30
[   75.308263]
               other info that might help us debug this:

[   75.308264]  Possible unsafe locking scenario:

[   75.308264]        CPU0                CPU1
[   75.308265]        ----                ----
[   75.308265]   lock(&hdev->lock);
[   75.308267]                            lock(sk_lock-
                                                AF_BLUETOOTH-BTPROTO_ISO);
[   75.308268]                            lock(&hdev->lock);
[   75.308269]   lock(sk_lock-AF_BLUETOOTH-BTPROTO_ISO);
[   75.308270]
                *** DEADLOCK ***

[   75.308271] 4 locks held by kworker/u81:2/2623:
[   75.308272]  #0: ffff8fdd66e52148 ((wq_completion)hci0#2){+.+.}-{0:0},
                at: process_one_work+0x443/0x740
[   75.308276]  #1: ffffafb488b7fe48 ((work_completion)(&hdev->rx_work)),
                at: process_one_work+0x1ce/0x740
[   75.308280]  #2: ffff8fdd61a10078 (&hdev->lock){+.+.}-{3:3}
                at: hci_le_per_adv_report_evt+0x47/0x2f0 [bluetooth]
[   75.308304]  #3: ffffffffb6ba4900 (rcu_read_lock){....}-{1:2},
                at: hci_connect_cfm+0x29/0x190 [bluetooth]

Fixes: 02171da ("Bluetooth: ISO: Add hcon for listening bis sk")
Signed-off-by: Iulia Tanasescu <[email protected]>
Signed-off-by: Luiz Augusto von Dentz <[email protected]>
clementleger pushed a commit that referenced this pull request Jan 3, 2025
…s_lock

For storing a value to a queue attribute, the queue_attr_store function
first freezes the queue (->q_usage_counter(io)) and then acquire
->sysfs_lock. This seems not correct as the usual ordering should be to
acquire ->sysfs_lock before freezing the queue. This incorrect ordering
causes the following lockdep splat which we are able to reproduce always
simply by accessing /sys/kernel/debug file using ls command:

[   57.597146] WARNING: possible circular locking dependency detected
[   57.597154] 6.12.0-10553-gb86545e02e8c #20 Tainted: G        W
[   57.597162] ------------------------------------------------------
[   57.597168] ls/4605 is trying to acquire lock:
[   57.597176] c00000003eb56710 (&mm->mmap_lock){++++}-{4:4}, at: __might_fault+0x58/0xc0
[   57.597200]
               but task is already holding lock:
[   57.597207] c0000018e27c6810 (&sb->s_type->i_mutex_key#3){++++}-{4:4}, at: iterate_dir+0x94/0x1d4
[   57.597226]
               which lock already depends on the new lock.

[   57.597233]
               the existing dependency chain (in reverse order) is:
[   57.597241]
               -> #5 (&sb->s_type->i_mutex_key#3){++++}-{4:4}:
[   57.597255]        down_write+0x6c/0x18c
[   57.597264]        start_creating+0xb4/0x24c
[   57.597274]        debugfs_create_dir+0x2c/0x1e8
[   57.597283]        blk_register_queue+0xec/0x294
[   57.597292]        add_disk_fwnode+0x2e4/0x548
[   57.597302]        brd_alloc+0x2c8/0x338
[   57.597309]        brd_init+0x100/0x178
[   57.597317]        do_one_initcall+0x88/0x3e4
[   57.597326]        kernel_init_freeable+0x3cc/0x6e0
[   57.597334]        kernel_init+0x34/0x1cc
[   57.597342]        ret_from_kernel_user_thread+0x14/0x1c
[   57.597350]
               -> #4 (&q->debugfs_mutex){+.+.}-{4:4}:
[   57.597362]        __mutex_lock+0xfc/0x12a0
[   57.597370]        blk_register_queue+0xd4/0x294
[   57.597379]        add_disk_fwnode+0x2e4/0x548
[   57.597388]        brd_alloc+0x2c8/0x338
[   57.597395]        brd_init+0x100/0x178
[   57.597402]        do_one_initcall+0x88/0x3e4
[   57.597410]        kernel_init_freeable+0x3cc/0x6e0
[   57.597418]        kernel_init+0x34/0x1cc
[   57.597426]        ret_from_kernel_user_thread+0x14/0x1c
[   57.597434]
               -> #3 (&q->sysfs_lock){+.+.}-{4:4}:
[   57.597446]        __mutex_lock+0xfc/0x12a0
[   57.597454]        queue_attr_store+0x9c/0x110
[   57.597462]        sysfs_kf_write+0x70/0xb0
[   57.597471]        kernfs_fop_write_iter+0x1b0/0x2ac
[   57.597480]        vfs_write+0x3dc/0x6e8
[   57.597488]        ksys_write+0x84/0x140
[   57.597495]        system_call_exception+0x130/0x360
[   57.597504]        system_call_common+0x160/0x2c4
[   57.597516]
               -> #2 (&q->q_usage_counter(io)#21){++++}-{0:0}:
[   57.597530]        __submit_bio+0x5ec/0x828
[   57.597538]        submit_bio_noacct_nocheck+0x1e4/0x4f0
[   57.597547]        iomap_readahead+0x2a0/0x448
[   57.597556]        xfs_vm_readahead+0x28/0x3c
[   57.597564]        read_pages+0x88/0x41c
[   57.597571]        page_cache_ra_unbounded+0x1ac/0x2d8
[   57.597580]        filemap_get_pages+0x188/0x984
[   57.597588]        filemap_read+0x13c/0x4bc
[   57.597596]        xfs_file_buffered_read+0x88/0x17c
[   57.597605]        xfs_file_read_iter+0xac/0x158
[   57.597614]        vfs_read+0x2d4/0x3b4
[   57.597622]        ksys_read+0x84/0x144
[   57.597629]        system_call_exception+0x130/0x360
[   57.597637]        system_call_common+0x160/0x2c4
[   57.597647]
               -> #1 (mapping.invalidate_lock#2){++++}-{4:4}:
[   57.597661]        down_read+0x6c/0x220
[   57.597669]        filemap_fault+0x870/0x100c
[   57.597677]        xfs_filemap_fault+0xc4/0x18c
[   57.597684]        __do_fault+0x64/0x164
[   57.597693]        __handle_mm_fault+0x1274/0x1dac
[   57.597702]        handle_mm_fault+0x248/0x484
[   57.597711]        ___do_page_fault+0x428/0xc0c
[   57.597719]        hash__do_page_fault+0x30/0x68
[   57.597727]        do_hash_fault+0x90/0x35c
[   57.597736]        data_access_common_virt+0x210/0x220
[   57.597745]        _copy_from_user+0xf8/0x19c
[   57.597754]        sel_write_load+0x178/0xd54
[   57.597762]        vfs_write+0x108/0x6e8
[   57.597769]        ksys_write+0x84/0x140
[   57.597777]        system_call_exception+0x130/0x360
[   57.597785]        system_call_common+0x160/0x2c4
[   57.597794]
               -> #0 (&mm->mmap_lock){++++}-{4:4}:
[   57.597806]        __lock_acquire+0x17cc/0x2330
[   57.597814]        lock_acquire+0x138/0x400
[   57.597822]        __might_fault+0x7c/0xc0
[   57.597830]        filldir64+0xe8/0x390
[   57.597839]        dcache_readdir+0x80/0x2d4
[   57.597846]        iterate_dir+0xd8/0x1d4
[   57.597855]        sys_getdents64+0x88/0x2d4
[   57.597864]        system_call_exception+0x130/0x360
[   57.597872]        system_call_common+0x160/0x2c4
[   57.597881]
               other info that might help us debug this:

[   57.597888] Chain exists of:
                 &mm->mmap_lock --> &q->debugfs_mutex --> &sb->s_type->i_mutex_key#3

[   57.597905]  Possible unsafe locking scenario:

[   57.597911]        CPU0                    CPU1
[   57.597917]        ----                    ----
[   57.597922]   rlock(&sb->s_type->i_mutex_key#3);
[   57.597932]                                lock(&q->debugfs_mutex);
[   57.597940]                                lock(&sb->s_type->i_mutex_key#3);
[   57.597950]   rlock(&mm->mmap_lock);
[   57.597958]
                *** DEADLOCK ***

[   57.597965] 2 locks held by ls/4605:
[   57.597971]  #0: c0000000137c12f8 (&f->f_pos_lock){+.+.}-{4:4}, at: fdget_pos+0xcc/0x154
[   57.597989]  #1: c0000018e27c6810 (&sb->s_type->i_mutex_key#3){++++}-{4:4}, at: iterate_dir+0x94/0x1d4

Prevent the above lockdep warning by acquiring ->sysfs_lock before
freezing the queue while storing a queue attribute in queue_attr_store
function. Later, we also found[1] another function __blk_mq_update_nr_
hw_queues where we first freeze queue and then acquire the ->sysfs_lock.
So we've also updated lock ordering in __blk_mq_update_nr_hw_queues
function and ensured that in all code paths we follow the correct lock
ordering i.e. acquire ->sysfs_lock before freezing the queue.

[1] https://lore.kernel.org/all/CAFj5m9Ke8+EHKQBs_Nk6hqd=LGXtk4mUxZUN5==ZcCjnZSBwHw@mail.gmail.com/

Reported-by: [email protected]
Fixes: af28141 ("block: freeze the queue in queue_attr_store")
Tested-by: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Signed-off-by: Nilay Shroff <[email protected]>
Reviewed-by: Ming Lei <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Jens Axboe <[email protected]>
clementleger pushed a commit that referenced this pull request Jan 6, 2025
syzbot reports that a recent fix causes nesting issues between the (now)
raw timeoutlock and the eventfd locking:

=============================
[ BUG: Invalid wait context ]
6.13.0-rc4-00080-g9828a4c0901f #29 Not tainted
-----------------------------
kworker/u32:0/68094 is trying to lock:
ffff000014d7a520 (&ctx->wqh#2){..-.}-{3:3}, at: eventfd_signal_mask+0x64/0x180
other info that might help us debug this:
context-{5:5}
6 locks held by kworker/u32:0/68094:
 #0: ffff0000c1d98148 ((wq_completion)iou_exit){+.+.}-{0:0}, at: process_one_work+0x4e8/0xfc0
 #1: ffff80008d927c78 ((work_completion)(&ctx->exit_work)){+.+.}-{0:0}, at: process_one_work+0x53c/0xfc0
 #2: ffff0000c59bc3d8 (&ctx->completion_lock){+.+.}-{3:3}, at: io_kill_timeouts+0x40/0x180
 #3: ffff0000c59bc358 (&ctx->timeout_lock){-.-.}-{2:2}, at: io_kill_timeouts+0x48/0x180
 #4: ffff800085127aa0 (rcu_read_lock){....}-{1:3}, at: rcu_lock_acquire+0x8/0x38
 #5: ffff800085127aa0 (rcu_read_lock){....}-{1:3}, at: rcu_lock_acquire+0x8/0x38
stack backtrace:
CPU: 7 UID: 0 PID: 68094 Comm: kworker/u32:0 Not tainted 6.13.0-rc4-00080-g9828a4c0901f #29
Hardware name: linux,dummy-virt (DT)
Workqueue: iou_exit io_ring_exit_work
Call trace:
 show_stack+0x1c/0x30 (C)
 __dump_stack+0x24/0x30
 dump_stack_lvl+0x60/0x80
 dump_stack+0x14/0x20
 __lock_acquire+0x19f8/0x60c8
 lock_acquire+0x1a4/0x540
 _raw_spin_lock_irqsave+0x90/0xd0
 eventfd_signal_mask+0x64/0x180
 io_eventfd_signal+0x64/0x108
 io_req_local_work_add+0x294/0x430
 __io_req_task_work_add+0x1c0/0x270
 io_kill_timeout+0x1f0/0x288
 io_kill_timeouts+0xd4/0x180
 io_uring_try_cancel_requests+0x2e8/0x388
 io_ring_exit_work+0x150/0x550
 process_one_work+0x5e8/0xfc0
 worker_thread+0x7ec/0xc80
 kthread+0x24c/0x300
 ret_from_fork+0x10/0x20

because after the preempt-rt fix for the timeout lock nesting inside
the io-wq lock, we now have the eventfd spinlock nesting inside the
raw timeout spinlock.

Rather than play whack-a-mole with other nesting on the timeout lock,
split the deletion and killing of timeouts so queueing the task_work
for the timeout cancelations can get done outside of the timeout lock.

Reported-by: [email protected]
Fixes: 020b40f ("io_uring: make ctx->timeout_lock a raw spinlock")
Signed-off-by: Jens Axboe <[email protected]>
clementleger pushed a commit that referenced this pull request Jan 6, 2025
…le_direct_reclaim()

The task sometimes continues looping in throttle_direct_reclaim() because
allow_direct_reclaim(pgdat) keeps returning false.  

 #0 [ffff80002cb6f8d0] __switch_to at ffff8000080095ac
 #1 [ffff80002cb6f900] __schedule at ffff800008abbd1c
 #2 [ffff80002cb6f990] schedule at ffff800008abc50c
 #3 [ffff80002cb6f9b0] throttle_direct_reclaim at ffff800008273550
 #4 [ffff80002cb6fa20] try_to_free_pages at ffff800008277b68
 #5 [ffff80002cb6fae0] __alloc_pages_nodemask at ffff8000082c4660
 #6 [ffff80002cb6fc50] alloc_pages_vma at ffff8000082e4a98
 #7 [ffff80002cb6fca0] do_anonymous_page at ffff80000829f5a8
 #8 [ffff80002cb6fce0] __handle_mm_fault at ffff8000082a5974
 #9 [ffff80002cb6fd90] handle_mm_fault at ffff8000082a5bd4

At this point, the pgdat contains the following two zones:

        NODE: 4  ZONE: 0  ADDR: ffff00817fffe540  NAME: "DMA32"
          SIZE: 20480  MIN/LOW/HIGH: 11/28/45
          VM_STAT:
                NR_FREE_PAGES: 359
        NR_ZONE_INACTIVE_ANON: 18813
          NR_ZONE_ACTIVE_ANON: 0
        NR_ZONE_INACTIVE_FILE: 50
          NR_ZONE_ACTIVE_FILE: 0
          NR_ZONE_UNEVICTABLE: 0
        NR_ZONE_WRITE_PENDING: 0
                     NR_MLOCK: 0
                    NR_BOUNCE: 0
                   NR_ZSPAGES: 0
            NR_FREE_CMA_PAGES: 0

        NODE: 4  ZONE: 1  ADDR: ffff00817fffec00  NAME: "Normal"
          SIZE: 8454144  PRESENT: 98304  MIN/LOW/HIGH: 68/166/264
          VM_STAT:
                NR_FREE_PAGES: 146
        NR_ZONE_INACTIVE_ANON: 94668
          NR_ZONE_ACTIVE_ANON: 3
        NR_ZONE_INACTIVE_FILE: 735
          NR_ZONE_ACTIVE_FILE: 78
          NR_ZONE_UNEVICTABLE: 0
        NR_ZONE_WRITE_PENDING: 0
                     NR_MLOCK: 0
                    NR_BOUNCE: 0
                   NR_ZSPAGES: 0
            NR_FREE_CMA_PAGES: 0

In allow_direct_reclaim(), while processing ZONE_DMA32, the sum of
inactive/active file-backed pages calculated in zone_reclaimable_pages()
based on the result of zone_page_state_snapshot() is zero.  

Additionally, since this system lacks swap, the calculation of inactive/
active anonymous pages is skipped.

        crash> p nr_swap_pages
        nr_swap_pages = $1937 = {
          counter = 0
        }

As a result, ZONE_DMA32 is deemed unreclaimable and skipped, moving on to
the processing of the next zone, ZONE_NORMAL, despite ZONE_DMA32 having
free pages significantly exceeding the high watermark.

The problem is that the pgdat->kswapd_failures hasn't been incremented.

        crash> px ((struct pglist_data *) 0xffff00817fffe540)->kswapd_failures
        $1935 = 0x0

This is because the node deemed balanced.  The node balancing logic in
balance_pgdat() evaluates all zones collectively.  If one or more zones
(e.g., ZONE_DMA32) have enough free pages to meet their watermarks, the
entire node is deemed balanced.  This causes balance_pgdat() to exit early
before incrementing the kswapd_failures, as it considers the overall
memory state acceptable, even though some zones (like ZONE_NORMAL) remain
under significant pressure.


The patch ensures that zone_reclaimable_pages() includes free pages
(NR_FREE_PAGES) in its calculation when no other reclaimable pages are
available (e.g., file-backed or anonymous pages).  This change prevents
zones like ZONE_DMA32, which have sufficient free pages, from being
mistakenly deemed unreclaimable.  By doing so, the patch ensures proper
node balancing, avoids masking pressure on other zones like ZONE_NORMAL,
and prevents infinite loops in throttle_direct_reclaim() caused by
allow_direct_reclaim(pgdat) repeatedly returning false.


The kernel hangs due to a task stuck in throttle_direct_reclaim(), caused
by a node being incorrectly deemed balanced despite pressure in certain
zones, such as ZONE_NORMAL.  This issue arises from
zone_reclaimable_pages() returning 0 for zones without reclaimable file-
backed or anonymous pages, causing zones like ZONE_DMA32 with sufficient
free pages to be skipped.

The lack of swap or reclaimable pages results in ZONE_DMA32 being ignored
during reclaim, masking pressure in other zones.  Consequently,
pgdat->kswapd_failures remains 0 in balance_pgdat(), preventing fallback
mechanisms in allow_direct_reclaim() from being triggered, leading to an
infinite loop in throttle_direct_reclaim().

This patch modifies zone_reclaimable_pages() to account for free pages
(NR_FREE_PAGES) when no other reclaimable pages exist.  This ensures zones
with sufficient free pages are not skipped, enabling proper balancing and
reclaim behavior.

[[email protected]: coding-style cleanups]
Link: https://lkml.kernel.org/r/[email protected]
Link: https://lkml.kernel.org/r/[email protected]
Fixes: 5a1c84b ("mm: remove reclaim and compaction retry approximations")
Signed-off-by: Seiji Nishikawa <[email protected]>
Cc: Mel Gorman <[email protected]>
Cc: <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
clementleger pushed a commit that referenced this pull request Jan 6, 2025
…nt message

Address a bug in the kernel that triggers a "sleeping function called from
invalid context" warning when /sys/kernel/debug/kmemleak is printed under
specific conditions:
- CONFIG_PREEMPT_RT=y
- Set SELinux as the LSM for the system
- Set kptr_restrict to 1
- kmemleak buffer contains at least one item

BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48
in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 136, name: cat
preempt_count: 1, expected: 0
RCU nest depth: 2, expected: 2
6 locks held by cat/136:
 #0: ffff32e64bcbf950 (&p->lock){+.+.}-{3:3}, at: seq_read_iter+0xb8/0xe30
 #1: ffffafe6aaa9dea0 (scan_mutex){+.+.}-{3:3}, at: kmemleak_seq_start+0x34/0x128
 #3: ffff32e6546b1cd0 (&object->lock){....}-{2:2}, at: kmemleak_seq_show+0x3c/0x1e0
 #4: ffffafe6aa8d8560 (rcu_read_lock){....}-{1:2}, at: has_ns_capability_noaudit+0x8/0x1b0
 #5: ffffafe6aabbc0f8 (notif_lock){+.+.}-{2:2}, at: avc_compute_av+0xc4/0x3d0
irq event stamp: 136660
hardirqs last  enabled at (136659): [<ffffafe6a80fd7a0>] _raw_spin_unlock_irqrestore+0xa8/0xd8
hardirqs last disabled at (136660): [<ffffafe6a80fd85c>] _raw_spin_lock_irqsave+0x8c/0xb0
softirqs last  enabled at (0): [<ffffafe6a5d50b28>] copy_process+0x11d8/0x3df8
softirqs last disabled at (0): [<0000000000000000>] 0x0
Preemption disabled at:
[<ffffafe6a6598a4c>] kmemleak_seq_show+0x3c/0x1e0
CPU: 1 UID: 0 PID: 136 Comm: cat Tainted: G            E      6.11.0-rt7+ #34
Tainted: [E]=UNSIGNED_MODULE
Hardware name: linux,dummy-virt (DT)
Call trace:
 dump_backtrace+0xa0/0x128
 show_stack+0x1c/0x30
 dump_stack_lvl+0xe8/0x198
 dump_stack+0x18/0x20
 rt_spin_lock+0x8c/0x1a8
 avc_perm_nonode+0xa0/0x150
 cred_has_capability.isra.0+0x118/0x218
 selinux_capable+0x50/0x80
 security_capable+0x7c/0xd0
 has_ns_capability_noaudit+0x94/0x1b0
 has_capability_noaudit+0x20/0x30
 restricted_pointer+0x21c/0x4b0
 pointer+0x298/0x760
 vsnprintf+0x330/0xf70
 seq_printf+0x178/0x218
 print_unreferenced+0x1a4/0x2d0
 kmemleak_seq_show+0xd0/0x1e0
 seq_read_iter+0x354/0xe30
 seq_read+0x250/0x378
 full_proxy_read+0xd8/0x148
 vfs_read+0x190/0x918
 ksys_read+0xf0/0x1e0
 __arm64_sys_read+0x70/0xa8
 invoke_syscall.constprop.0+0xd4/0x1d8
 el0_svc+0x50/0x158
 el0t_64_sync+0x17c/0x180

%pS and %pK, in the same back trace line, are redundant, and %pS can void
%pK service in certain contexts.

%pS alone already provides the necessary information, and if it cannot
resolve the symbol, it falls back to printing the raw address voiding
the original intent behind the %pK.

Additionally, %pK requires a privilege check CAP_SYSLOG enforced through
the LSM, which can trigger a "sleeping function called from invalid
context" warning under RT_PREEMPT kernels when the check occurs in an
atomic context. This issue may also affect other LSMs.

This change avoids the unnecessary privilege check and resolves the
sleeping function warning without any loss of information.

Link: https://lkml.kernel.org/r/[email protected]
Fixes: 3a6f33d ("mm/kmemleak: use %pK to display kernel pointers in backtrace")
Signed-off-by: Alessandro Carminati <[email protected]>
Acked-by: Sebastian Andrzej Siewior <[email protected]>
Acked-by: Catalin Marinas <[email protected]>
Cc: Clément Léger <[email protected]>
Cc: Alessandro Carminati <[email protected]>
Cc: Eric Chanudet <[email protected]>
Cc: Gabriele Paoloni <[email protected]>
Cc: Juri Lelli <[email protected]>
Cc: Steven Rostedt <[email protected]>
Cc: Thomas Weißschuh <[email protected]>
Cc: <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants