Skip to content

rootlu/MMDNE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

21 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

MMDNE

Source code for CIKM 2019 paper "Temporal Network Embedding with Micro- and Macro-dynamics".

Requirements

  • Python 2.7
  • numpy
  • scipy
  • PyTorch (0.3.0)
  • My machine with two GPUs (NVIDIA GTX-1080 *2) and two CPUs (Intel Xeon E5-2690 * 2)

Description

The datasets are also available at Google Drive.

MMDNE/
β”œβ”€β”€ code
β”‚   β”œβ”€β”€ DataHelper.py: load and process data for MMDNE
β”‚   β”œβ”€β”€ Evaluation.py: evaluate the performance of MMDNE (e.g., classification)
β”‚   └── MMDNE.py: model architecture and training
β”œβ”€β”€ data
β”‚   └── dblp
β”‚       β”œβ”€β”€ dblp.txt: each line is a temporal edge with the format (node1 \t node2 \t timestamp)
β”‚       β”œβ”€β”€ node2label.txt: node label data with the format (node_name, label)
β”‚   └── Tmall
β”‚       β”œβ”€β”€ tmall.txt: each line is a temporal edge with the format (node1 \t node2 \t timestamp)
β”‚       β”œβ”€β”€ node2label.txt: node label data with the format (node_name, label)
β”‚   └── Eucore: will be available soon!
└── res
β”‚    └── dblp
β”‚        └──
β”œβ”€β”€ README.md

Usage:

python MMDNE.py

Reference

@inproceedings{Yuanfu2019MMDNE,
  title={Temporal Network Embedding with Micro- and Macro-dynamics},
  author={Yuanfu Lu, Xiao Wang, Chuan Shi, Philip S. Yu, Yanfang Ye.}
  booktitle={Proceedings of CIKM},
  year={2019}
}

About

Source code for CIKM 2019 paper "Temporal Network Embedding with Micro- and Macro-dynamics"

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages