Skip to content

Commit

Permalink
Merge pull request #1351 from kremnik/recognition_find_batched
Browse files Browse the repository at this point in the history
Recognition find batched
  • Loading branch information
serengil authored Oct 1, 2024
2 parents 1475aa8 + 8adca77 commit 4f48d97
Show file tree
Hide file tree
Showing 4 changed files with 384 additions and 25 deletions.
36 changes: 24 additions & 12 deletions deepface/DeepFace.py
Original file line number Diff line number Diff line change
Expand Up @@ -276,7 +276,8 @@ def find(
silent: bool = False,
refresh_database: bool = True,
anti_spoofing: bool = False,
) -> List[pd.DataFrame]:
batched: bool = False,
) -> Union[List[pd.DataFrame], List[List[Dict[str, Any]]]]:
"""
Identify individuals in a database
Args:
Expand Down Expand Up @@ -322,22 +323,32 @@ def find(
anti_spoofing (boolean): Flag to enable anti spoofing (default is False).
Returns:
results (List[pd.DataFrame]): A list of pandas dataframes. Each dataframe corresponds
to the identity information for an individual detected in the source image.
The DataFrame columns include:
results (List[pd.DataFrame] or List[List[Dict[str, Any]]]):
A list of pandas dataframes (if `batched=False`) or
a list of dicts (if `batched=True`).
Each dataframe or dict corresponds to the identity information for
an individual detected in the source image.
- 'identity': Identity label of the detected individual.
Note: If you have a large database and/or a source photo with many faces,
use `batched=True`, as it is optimized for large batch processing.
Please pay attention that when using `batched=True`, the function returns
a list of dicts (not a list of DataFrames),
but with the same keys as the columns in the DataFrame.
The DataFrame columns or dict keys include:
- 'target_x', 'target_y', 'target_w', 'target_h': Bounding box coordinates of the
target face in the database.
- 'identity': Identity label of the detected individual.
- 'source_x', 'source_y', 'source_w', 'source_h': Bounding box coordinates of the
detected face in the source image.
- 'target_x', 'target_y', 'target_w', 'target_h': Bounding box coordinates of the
target face in the database.
- 'threshold': threshold to determine a pair whether same person or different persons
- 'source_x', 'source_y', 'source_w', 'source_h': Bounding box coordinates of the
detected face in the source image.
- 'distance': Similarity score between the faces based on the
specified model and distance metric
- 'threshold': threshold to determine a pair whether same person or different persons
- 'distance': Similarity score between the faces based on the
specified model and distance metric
"""
return recognition.find(
img_path=img_path,
Expand All @@ -353,6 +364,7 @@ def find(
silent=silent,
refresh_database=refresh_database,
anti_spoofing=anti_spoofing,
batched=batched
)


Expand Down
257 changes: 249 additions & 8 deletions deepface/modules/recognition.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,8 @@ def find(
silent: bool = False,
refresh_database: bool = True,
anti_spoofing: bool = False,
) -> List[pd.DataFrame]:
batched: bool = False,
) -> Union[List[pd.DataFrame], List[List[Dict[str, Any]]]]:
"""
Identify individuals in a database
Expand Down Expand Up @@ -77,9 +78,19 @@ def find(
Returns:
results (List[pd.DataFrame]): A list of pandas dataframes. Each dataframe corresponds
to the identity information for an individual detected in the source image.
The DataFrame columns include:
results (List[pd.DataFrame] or List[List[Dict[str, Any]]]):
A list of pandas dataframes (if `batched=False`) or
a list of dicts (if `batched=True`).
Each dataframe or dict corresponds to the identity information for
an individual detected in the source image.
Note: If you have a large database and/or a source photo with many faces,
use `batched=True`, as it is optimized for large batch processing.
Please pay attention that when using `batched=True`, the function returns
a list of dicts (not a list of DataFrames),
but with the same keys as the columns in the DataFrame.
The DataFrame columns or dict keys include:
- 'identity': Identity label of the detected individual.
Expand Down Expand Up @@ -233,10 +244,6 @@ def find(

# ----------------------------
# now, we got representations for facial database
df = pd.DataFrame(representations)

if silent is False:
logger.info(f"Searching {img_path} in {df.shape[0]} length datastore")

# img path might have more than once face
source_objs = detection.extract_faces(
Expand All @@ -249,6 +256,24 @@ def find(
anti_spoofing=anti_spoofing,
)

if batched:
return find_batched(
representations,
source_objs,
model_name,
distance_metric,
enforce_detection,
align,
threshold,
normalization,
anti_spoofing
)

df = pd.DataFrame(representations)

if silent is False:
logger.info(f"Searching {img_path} in {df.shape[0]} length datastore")

resp_obj = []

for source_obj in source_objs:
Expand Down Expand Up @@ -415,3 +440,219 @@ def __find_bulk_embeddings(
)

return representations

def find_batched(
representations: List[Dict[str, Any]],
source_objs: List[Dict[str, Any]],
model_name: str = "VGG-Face",
distance_metric: str = "cosine",
enforce_detection: bool = True,
align: bool = True,
threshold: Optional[float] = None,
normalization: str = "base",
anti_spoofing: bool = False,
) -> List[List[Dict[str, Any]]]:
"""
Perform batched face recognition by comparing source face embeddings with a set of
target embeddings. It calculates pairwise distances between the source and target
embeddings using the specified distance metric.
The function uses batch processing for efficient computation of distances.
Args:
representations (List[Dict[str, Any]]):
A list of dictionaries containing precomputed target embeddings and associated metadata.
Each dictionary should have at least the key `embedding`.
source_objs (List[Dict[str, Any]]):
A list of dictionaries representing the source images to compare against
the target embeddings. Each dictionary should contain:
- `face`: The image data or path to the source face image.
- `facial_area`: A dictionary with keys `x`, `y`, `w`, `h`
indicating the facial region.
- Optionally, `is_real`: A boolean indicating if the face is real
(used for anti-spoofing).
model_name (str): Model for face recognition. Options: VGG-Face, Facenet, Facenet512,
OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace and GhostFaceNet (default is VGG-Face).
distance_metric (string): Metric for measuring similarity. Options: 'cosine',
'euclidean', 'euclidean_l2'.
enforce_detection (boolean): If no face is detected in an image, raise an exception.
Default is True. Set to False to avoid the exception for low-resolution images.
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'centerface' or 'skip'.
align (boolean): Perform alignment based on the eye positions.
threshold (float): Specify a threshold to determine whether a pair represents the same
person or different individuals. This threshold is used for comparing distances.
If left unset, default pre-tuned threshold values will be applied based on the specified
model name and distance metric (default is None).
normalization (string): Normalize the input image before feeding it to the model.
Default is base. Options: base, raw, Facenet, Facenet2018, VGGFace, VGGFace2, ArcFace
silent (boolean): Suppress or allow some log messages for a quieter analysis process.
anti_spoofing (boolean): Flag to enable anti spoofing (default is False).
Returns:
List[List[Dict[str, Any]]]:
A list where each element corresponds to a source face and
contains a list of dictionaries with matching faces.
"""
embeddings_list = []
valid_mask = []
metadata = set()

for item in representations:
emb = item.get('embedding')
if emb is not None:
embeddings_list.append(emb)
valid_mask.append(True)
else:
embeddings_list.append(np.zeros_like(representations[0]['embedding']))
valid_mask.append(False)

metadata.update(item.keys())

# remove embedding key from other keys
metadata.discard('embedding')
metadata = list(metadata)

embeddings = np.array(embeddings_list) # (N, D)
valid_mask = np.array(valid_mask) # (N,)

data = {
key: np.array([item.get(key, None) for item in representations])
for key in metadata
}

target_embeddings = []
source_regions = []
target_thresholds = []

for source_obj in source_objs:
if anti_spoofing and not source_obj.get("is_real", True):
raise ValueError("Spoof detected in the given image.")

source_img = source_obj["face"]
source_region = source_obj["facial_area"]

target_embedding_obj = representation.represent(
img_path=source_img,
model_name=model_name,
enforce_detection=enforce_detection,
detector_backend="skip",
align=align,
normalization=normalization,
)
# it is safe to access 0 index because we already fed detected face to represent function
target_representation = target_embedding_obj[0]["embedding"]

target_embeddings.append(target_representation)
source_regions.append(source_region)

target_threshold = threshold or verification.find_threshold(model_name, distance_metric)
target_thresholds.append(target_threshold)

target_embeddings = np.array(target_embeddings) # (M, D)
target_thresholds = np.array(target_thresholds) # (M,)
source_regions_arr = {
'source_x': np.array([region['x'] for region in source_regions]),
'source_y': np.array([region['y'] for region in source_regions]),
'source_w': np.array([region['w'] for region in source_regions]),
'source_h': np.array([region['h'] for region in source_regions]),
}

def find_cosine_distance_batch(
embeddings: np.ndarray, target_embeddings: np.ndarray
) -> np.ndarray:
"""
Find the cosine distances between batches of embeddings
Args:
embeddings (np.ndarray): array of shape (N, D)
target_embeddings (np.ndarray): array of shape (M, D)
Returns:
np.ndarray: distance matrix of shape (M, N)
"""
embeddings_norm = verification.l2_normalize(embeddings, axis=1)
target_embeddings_norm = verification.l2_normalize(target_embeddings, axis=1)
cosine_similarities = np.dot(target_embeddings_norm, embeddings_norm.T)
cosine_distances = 1 - cosine_similarities
return cosine_distances

def find_euclidean_distance_batch(
embeddings: np.ndarray, target_embeddings: np.ndarray
) -> np.ndarray:
"""
Find the Euclidean distances between batches of embeddings
Args:
embeddings (np.ndarray): array of shape (N, D)
target_embeddings (np.ndarray): array of shape (M, D)
Returns:
np.ndarray: distance matrix of shape (M, N)
"""
diff = embeddings[None, :, :] - target_embeddings[:, None, :] # (M, N, D)
distances = np.linalg.norm(diff, axis=2) # (M, N)
return distances

def find_distance_batch(
embeddings: np.ndarray, target_embeddings: np.ndarray, distance_metric: str,
) -> np.ndarray:
"""
Find pairwise distances between batches of embeddings using the specified distance metric
Args:
embeddings (np.ndarray): array of shape (N, D)
target_embeddings (np.ndarray): array of shape (M, D)
distance_metric (str): distance metric ('cosine', 'euclidean', 'euclidean_l2')
Returns:
np.ndarray: distance matrix of shape (M, N)
"""
if distance_metric == "cosine":
distances = find_cosine_distance_batch(embeddings, target_embeddings)
elif distance_metric == "euclidean":
distances = find_euclidean_distance_batch(embeddings, target_embeddings)
elif distance_metric == "euclidean_l2":
embeddings_norm = verification.l2_normalize(embeddings, axis=1)
target_embeddings_norm = verification.l2_normalize(target_embeddings, axis=1)
distances = find_euclidean_distance_batch(embeddings_norm, target_embeddings_norm)
else:
raise ValueError("Invalid distance_metric passed - ", distance_metric)
return np.round(distances, 6)

distances = find_distance_batch(embeddings, target_embeddings, distance_metric) # (M, N)
distances[:, ~valid_mask] = np.inf

resp_obj = []

for i in range(len(target_embeddings)):
target_distances = distances[i] # (N,)
target_threshold = target_thresholds[i]

N = embeddings.shape[0]
result_data = dict(data)
result_data.update({
'source_x': np.full(N, source_regions_arr['source_x'][i]),
'source_y': np.full(N, source_regions_arr['source_y'][i]),
'source_w': np.full(N, source_regions_arr['source_w'][i]),
'source_h': np.full(N, source_regions_arr['source_h'][i]),
'threshold': np.full(N, target_threshold),
'distance': target_distances,
})

mask = target_distances <= target_threshold
filtered_data = {key: value[mask] for key, value in result_data.items()}

sorted_indices = np.argsort(filtered_data['distance'])
sorted_data = {key: value[sorted_indices] for key, value in filtered_data.items()}

num_results = len(sorted_data['distance'])
result_dicts = [
{key: sorted_data[key][i] for key in sorted_data}
for i in range(num_results)
]
resp_obj.append(result_dicts)
return resp_obj
13 changes: 8 additions & 5 deletions deepface/modules/verification.py
Original file line number Diff line number Diff line change
Expand Up @@ -304,18 +304,21 @@ def find_euclidean_distance(
return np.linalg.norm(source_representation - test_representation)


def l2_normalize(x: Union[np.ndarray, list]) -> np.ndarray:
def l2_normalize(
x: Union[np.ndarray, list], axis: Union[int, None] = None, epsilon: float = 1e-10
) -> np.ndarray:
"""
Normalize input vector with l2
Args:
x (np.ndarray or list): given vector
axis (int): axis along which to normalize
Returns:
y (np.ndarray): l2 normalized vector
np.ndarray: l2 normalized vector
"""
if isinstance(x, list):
x = np.array(x)
norm = np.linalg.norm(x)
return x if norm == 0 else x / norm
norm = np.linalg.norm(x, axis=axis, keepdims=True)
return x / (norm + epsilon)


def find_distance(
Expand All @@ -341,7 +344,7 @@ def find_distance(
)
else:
raise ValueError("Invalid distance_metric passed - ", distance_metric)
return distance
return np.round(distance, 6)


def find_threshold(model_name: str, distance_metric: str) -> float:
Expand Down
Loading

0 comments on commit 4f48d97

Please sign in to comment.