-
Notifications
You must be signed in to change notification settings - Fork 1
/
detect_mask_video.py
243 lines (185 loc) · 6.95 KB
/
detect_mask_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# USAGE
# python detect_mask_video.py
# importation des modèles nécessaires
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.models import load_model
from imutils.video import VideoStream
import simpleaudio as sa
import asyncio
import vlc
import numpy as np
import argparse
import imutils
import time
import cv2
import os
def detect_and_predict_mask(frame, faceNet, maskNet):
# Saisie des dimensions du cadre, puis construction une goutte à partir de celle-ci
(h, w) = frame.shape[:2]
#blob = cv2.dnn.blobFromImage(image, scalefactor=1.0, size, mean, swapRB=True)
blob = cv2.dnn.blobFromImage(frame, 1.0, (300, 300),
(104.0, 177.0, 123.0))
# pass the blob through the network and obtain the face detections
faceNet.setInput(blob)
detections = faceNet.forward()
# initialize our list of faces, their corresponding locations,
# and the list of predictions from our face mask network
faces = []
locs = []
preds = []
# loop over the detections
for i in range(0, detections.shape[2]):
# extract the confidence (i.e., probability) associated with
# the detection
confidence = detections[0, 0, i, 2]
# filter out weak detections by ensuring the confidence is
# greater than the minimum confidence
if confidence > args["confidence"]:
# compute the (x, y)-coordinates of the bounding box for
# the object
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
# ensure the bounding boxes fall within the dimensions of
# the frame
(startX, startY) = (max(0, startX), max(0, startY))
(endX, endY) = (min(w - 1, endX), min(h - 1, endY))
# extract the face ROI, convert it from BGR to RGB channel
# ordering, resize it to 224x224, and preprocess it
face = frame[startY:endY, startX:endX]
face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
face = cv2.resize(face, (224, 224))
face = img_to_array(face)
face = preprocess_input(face)
# add the face and bounding boxes to their respective
# lists
faces.append(face)
locs.append((startX, startY, endX, endY))
# only make a predictions if at least one face was detected
if len(faces) > 0:
# for faster inference we'll make batch predictions on *all*
# faces at the same time rather than one-by-one predictions
# in the above `for` loop
faces = np.array(faces, dtype="float32")
preds = maskNet.predict(faces, batch_size=32)
# return a 2-tuple of the face locations and their corresponding
# locations
return (locs, preds)
# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-f", "--face", type=str,
default="face_detector",
help="path to face detector model directory")
ap.add_argument("-m", "--model", type=str,
default="mask_detector.model",
help="path to trained face mask detector model")
ap.add_argument("-c", "--confidence", type=float, default=0.5,
help="minimum probability to filter weak detections")
args = vars(ap.parse_args())
# load our serialized face detector model from disk
print("[INFO] loading face detector model...")
prototxtPath = os.path.sep.join([args["face"], "deploy.prototxt"])
weightsPath = os.path.sep.join([args["face"],
"res10_300x300_ssd_iter_140000.caffemodel"])
faceNet = cv2.dnn.readNet(prototxtPath, weightsPath)
# load the face mask detector model from disk
print("[INFO] loading face mask detector model...")
maskNet = load_model(args["model"])
# initialize the video stream and allow the camera sensor to warm up
print("[INFO] starting video stream...")
vs = VideoStream(src=0).start()
time.sleep(2.0)
wave_obj = sa.WaveObject.from_wave_file("audio/audio.wav")
# loop over the frames from the video stream
while True:
# grab the frame from the threaded video stream and resize it
# to have a maximum width of 800 pixels
frame = vs.read()
frame = imutils.resize(frame, width=800)
# detect faces in the frame and determine if they are wearing a
# face mask or not
(locs, preds) = detect_and_predict_mask(frame, faceNet, maskNet)
# loop over the detected face locations and their corresponding
# locations
for (box, pred) in zip(locs, preds):
# unpack the bounding box and predictions
(startX, startY, endX, endY) = box
(mask, withoutMask) = pred
if mask < withoutMask:
label = "No Mask"
color = (0, 0, 255)
smiley = "\pacontent.jpg"
# smiley integration ---------------------------------------------------------------------------
# path
path = 'image' + smiley
# Reading an image in default mode
image = cv2.imread(path)
# Window name in which image is displayed
window_name = 'Image'
# font
font = cv2.FONT_HERSHEY_SIMPLEX
# org
org = (50, 50)
# fontScale
fontScale = 1
# Blue color in BGR
color_img = (255, 0, 0)
# Line thickness of 2 px
thickness = 2
# Using cv2.putText() method
image = cv2.putText(image, '', org, font,
fontScale, color_img, thickness, cv2.LINE_AA)
#End smiley integration ------------------------------------------------------------------------
# include the probability in the label
label = "{}: {:.2f}%".format(label, max(mask, withoutMask) * 100)
# display the label and bounding box rectangle on the output
# frame
cv2.putText(frame, label, (startX, startY - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2)
cv2.rectangle(frame, (startX, startY), (endX, endY), color, 2)
else:
label = "Mask"
color = (0, 255, 0)
smiley = '\smiley.jpg'
# smiley integration ---------------------------------------------------------------------------
# path
path = 'image' + smiley
# Reading an image in default mode
image = cv2.imread(path)
# Window name in which image is displayed
window_name = 'Image'
# font
font = cv2.FONT_HERSHEY_SIMPLEX
# org
org = (50, 50)
# fontScale
fontScale = 1
# Blue color in BGR
color_img = (255, 0, 0)
# Line thickness of 2 px
thickness = 2
# Using cv2.putText() method
image = cv2.putText(image, '', org, font,
fontScale, color_img, thickness, cv2.LINE_AA)
#End smiley integration ------------------------------------------------------------------------
# include the probability in the label
label = "{}: {:.2f}%".format(label, max(mask, withoutMask) * 100)
# display the label and bounding box rectangle on the output
# frame
cv2.putText(frame, label, (startX, startY - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2)
cv2.rectangle(frame, (startX, startY), (endX, endY), color, 2)
# show the output frame
cv2.imshow("Frame", frame)
# Displaying the image
cv2.imshow(window_name, image)
key = cv2.waitKey(1) & 0xFF
# if the `q` key was pressed, break from the loop
if key == ord("q"):
break
if mask < withoutMask:
play_obj = wave_obj.play()
play_obj.wait_done()
# do a bit of cleanup
cv2.destroyAllWindows()
vs.stop()