This action lets you trigger a job run on dbt Cloud, fetches the run_results.json
artifact, and git checkout
s the branch that was ran by dbt Cloud.
Example usage at fal-ai/fal_bike_example
dbt_cloud_token
- dbt Cloud API tokendbt_cloud_account_id
- dbt Cloud Account IDdbt_cloud_job_id
- dbt Cloud Job ID
We recommend passing sensitive variables as GitHub secrets. Example usage.
failure_on_error
- Boolean to make the action report a failure when dbt-cloud runs. Mark this asfalse
to run fal after the dbt-cloud job.interval
- The interval between polls in seconds (Default:30
)
Use any of the documented options for the dbt API.
cause
(Default:Triggered by a Github Action
)git_sha
git_branch
schema_override
dbt_version_override
threads_override
target_name_override
generate_docs_override
timeout_seconds_override
steps_override
: pass a YAML-parseable string. (e.g.steps_override: '["dbt seed", "dbt run"]'
)
name: Run dbt cloud
on:
workflow_dispatch:
jobs:
deploy:
runs-on: ubuntu-latest
steps:
- uses: fal-ai/dbt-cloud-action@main
id: dbt_cloud_run
with:
dbt_cloud_token: ${{ secrets.DBT_CLOUD_API_TOKEN }}
dbt_cloud_account_id: ${{ secrets.DBT_CLOUD_ACCOUNT_ID }}
dbt_cloud_job_id: ${{ secrets.DBT_CLOUD_JOB_ID }}
failure_on_error: true
steps_override: |
- dbt seed
- dbt run
Use with fal
You can trigger a dbt Cloud run and it will download the artifacts to be able to run your fal run
command easily in GitHub Actions.
You have to do certain extra steps described here:
name: Run dbt cloud and fal scripts
on:
workflow_dispatch:
jobs:
deploy:
runs-on: ubuntu-latest
steps:
# Checkout before downloading artifacts or setting profiles.yml
- uses: actions/checkout@v3
with:
fetch-depth: 0
- uses: fal-ai/dbt-cloud-action@main
id: dbt_cloud_run
with:
dbt_cloud_token: ${{ secrets.DBT_CLOUD_API_TOKEN }}
dbt_cloud_account_id: ${{ secrets.DBT_ACCOUNT_ID }}
dbt_cloud_job_id: ${{ secrets.DBT_CLOUD_JOB_ID }}
failure_on_error: false
- name: Setup profiles.yml
shell: python
env:
contents: ${{ secrets.PROFILES_YML }}
run: |
import yaml
import os
import io
profiles_string = os.getenv('contents')
profiles_data = yaml.safe_load(profiles_string)
with io.open('profiles.yml', 'w', encoding='utf8') as outfile:
yaml.dump(profiles_data, outfile, default_flow_style=False, allow_unicode=True)
- uses: actions/setup-python@v2
with:
python-version: "3.9.x"
- name: Install dependencies
# Normally would use a `requirements.txt`.
run: |
pip install dbt-bigquery
pip install fal[bigquery]
- name: Run fal scripts
env:
SLACK_BOT_TOKEN: ${{ secrets.SLACK_BOT_TOKEN }}
SLACK_BOT_CHANNEL: ${{ secrets.SLACK_BOT_CHANNEL }}
run: |
# Move to the same code state of the dbt Cloud Job
git checkout ${{ steps.dbt_cloud_run.outputs.git_sha }}
# TODO: review target in passed profiles.yaml contents
fal run --profiles-dir .
fal relies on the generated artifacts from a dbt run step to get model statuses. dbt-cloud only makes these artifacts available after the last step finished running.
In order to get the status information that you need for fal, make sure to run the step you are interested in last.
For example, this dbt job will provide the run_results.json
of dbt docs generate
, which is probably not what you want fal to report about:
So, you would make dbt docs generate
run before dbt run
and leave dbt run
as the last step.