"A Robust Facial Expression Recognition Algorithm Based on Multi-Rate Feature Fusion Scheme" Sensors (MDPI) at online: https://doi.org/10.3390/s21216954
- python 3.7
- pip install tensorflow-gpu==2.1.0
- pip install keras==2.2.4
- pip install theano
- pip install opencv-python
- pip install matplotlib
- pip install numpy
- pip install keras-self-attention
- Install ‘FaceBoxes’ module’s environment for face detection
( https://github.com/sfzhang15/FaceBoxes ) - Install ’SAN’ module’s environment for landmark detection
( https://github.com/D-X-Y/landmark-detection )
- first input = selected dataset you want to train and test from the above list
- second input = iteration of training & testing preprocessing list (pre = ['pre', 'lbp', 'norm', 'normlbp'])
python concat_train_test.py
then enter
1
and enter
3
it means
- first input : 1 -> select 'MMI_minimum dataset'
- second input : 3 -> train & test selected database of 'preprocessed, lbp, normalized dataset'