Masked Graph Structure and Multi-scale Attention-based Graph Network for Vehicle Re-Identification
python tools/train_net.py --config-file ./configs/VeRi/sbs_R50-ibn.yml
python tools/train_net.py --config-file ./configs/VehicleID/Base-bagtricks.yml
python3 tools/train_net.py --config-file ./configs/VeRi/sbs_R50-ibn.yml --num-gpus 4
python tools/train_net.py --config-file ./configs/VeRi/sbs_R50-ibn.yml --eval-only MODEL.WEIGHTS ./logs/veri776/model_best.pth
You can use our trained weight files for testing. You can access the files through this link.
Performance (%) comparison on the VeRi-776 dataset.
Method | mAP | Rank-1 | Rank-5 |
---|---|---|---|
Baseline | 81.09 | 96.72 | 98.33 |
MMsAGN | 83.57 | 97.44 | 99.05 |
Performance (%) comparison on the VehicleID dataset.
Method | Test800 Rank-1 | Test800 Rank-5 | Test1600 Rank-1 | Test1600 Rank-5 | Test2400 Rank-1 | Test2400 Rank-5 |
---|---|---|---|---|---|---|
Baseline | 66.33 | 89.38 | 58.72 | 82.55 | 53.77 | 76.83 |
MMsAGN | 87.41 | 98.17 | 83.88 | 96.36 | 81.30 | 94.22 |