Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implement BiCGSTAB #340

Merged
merged 1 commit into from
Oct 8, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions sprs/src/sparse/linalg.rs
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
use crate::{DenseVector, DenseVectorMut};
use num_traits::Num;

pub mod bicgstab;
pub mod etree;
pub mod ordering;
pub mod trisolve;
Expand Down
391 changes: 391 additions & 0 deletions sprs/src/sparse/linalg/bicgstab.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,391 @@
//! Stabilized bi-conjugate gradient solver for solving Ax = b with x unknown. Suitable for non-symmetric matrices.
//! A simple, sparse-sparse, serial, un-preconditioned implementation.
//!
//! # References
//! The original paper, which is thoroughly paywalled but widely referenced:
//!
//! ```text
//! H. A. van der Vorst,
//! “Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems,”
//! SIAM Journal on Scientific and Statistical Computing, Jul. 2006, doi: 10.1137/0913035.
//! ```
//!
//! A useful discussion of computational cost and convergence characteristics for the CG
//! family of algorithms can be found in the paper that introduces QMRCGSTAB, in Table 1:
//!
//! ```text
//! T. F. Chan, E. Gallopoulos, V. Simoncini, T. Szeto, and C. H. Tong,
//! “A Quasi-Minimal Residual Variant of the Bi-CGSTAB Algorithm for Nonsymmetric Systems,”
//! SIAM J. Sci. Comput., vol. 15, no. 2, pp. 338–347, Mar. 1994, doi: 10.1137/0915023.
//! ```
//!
//! A less-paywalled pseudocode variant for this solver (as well as CG aand CGS) can be found at:
//! ```text
//! https://utminers.utep.edu/xzeng/2017spring_math5330/MATH_5330_Computational_Methods_of_Linear_Algebra_files/ln07.pdf
//! ```
//!
//! # Example
//! ```rust
//! use sprs::{CsMatI, CsVecI};
//! use sprs::linalg::bicgstab::BiCGSTAB;
//!
//! let a = CsMatI::new_csc(
//! (4, 4),
//! vec![0, 2, 4, 6, 8],
//! vec![0, 3, 1, 2, 1, 2, 0, 3],
//! vec![1.0, 2., 21., 6., 6., 2., 2., 8.],
//! );
//!
//! // Solve Ax=b
//! let tol = 1e-60;
//! let max_iter = 50;
//! let b = CsVecI::new(4, vec![0, 1, 2, 3], vec![1.0; 4]);
//! let x0 = CsVecI::new(4, vec![0, 1, 2, 3], vec![1.0, 1.0, 1.0, 1.0]);
//!
//! let res = BiCGSTAB::<'_, f64, _, _>::solve(
//! a.view(),
//! x0.view(),
//! b.view(),
//! tol,
//! max_iter,
//! )
//! .unwrap();
//! let b_recovered = &a * &res.x();
//!
//! println!("Iteration count {:?}", res.iteration_count());
//! println!("Soft restart count {:?}", res.soft_restart_count());
//! println!("Hard restart count {:?}", res.hard_restart_count());
//!
//! // Make sure the solved values match expectation
//! for (input, output) in
//! b.to_dense().iter().zip(b_recovered.to_dense().iter())
//! {
//! assert!(
//! (1.0 - input / output).abs() < tol,
jlogan03 marked this conversation as resolved.
Show resolved Hide resolved
//! "Solved output did not match input"
//! );
//! }
//! ```
//!
//! # Commentary
//! This implementation differs slightly from the common pseudocode variations in the following ways:
//! * Both soft-restart and hard-restart logic are present
//! * Soft restart on `r` becoming perpendicular to `rhat`
//! * Hard restart to check true error before claiming convergence
//! * Soft-restart logic uses a correct metric of perpendicularity instead of a magnitude heuristic
//! * The usual method, which compares a fixed value to `rho`, does not capture the fact that the
//! magnitude of `rho` will naturally decrease as the solver approaches convergence
//! * This change eliminates the effect where the a soft restart is performed on every iteration for the last few
//! iterations of any solve with a reasonable error tolerance
//! * Hard-restart logic provides some real guarantee of correctness
//! * The usual implementations keep a cheap, but inaccurate, running estimate of the error
//! * That decreases the cost of iterations by about half by eliminating a matrix-vector multiplication,
//! but allows the estimate of error to drift numerically, which causes the solver to return claiming
//! convergence when the solved output does not, in fact, match the input system
//! * This change guarantees that the solver will not return claiming convergence unless the solution
//! actually matches the input system, and will refresh its estimate of the error and continue iterations
//! if it has reached a falsely-converged state, continuing until it either reaches true convergence or
//! reaches maximum iterations
use crate::indexing::SpIndex;
use crate::sparse::{CsMatViewI, CsVecI, CsVecViewI};
use num_traits::One;

/// Stabilized bi-conjugate gradient solver
#[derive(Debug)]
pub struct BiCGSTAB<'a, T, I: SpIndex, Iptr: SpIndex> {
// Configuration
iteration_count: usize,
soft_restart_threshold: T,
soft_restart_count: usize,
hard_restart_count: usize,
// Problem statement: err = a * x - b
err: T,
a: CsMatViewI<'a, T, I, Iptr>,
b: CsVecViewI<'a, T, I>,
x: CsVecI<T, I>,
// Intermediate vectors
r: CsVecI<T, I>,
rhat: CsVecI<T, I>, // Arbitrary w/ dot(rhat, r) != 0
p: CsVecI<T, I>,
// Intermediate scalars
rho: T,
}

macro_rules! bicgstab_impl {
($T: ty) => {
impl<'a, I: SpIndex, Iptr: SpIndex> BiCGSTAB<'a, $T, I, Iptr> {
/// Initialize the solver with a fresh error estimate
pub fn new(
a: CsMatViewI<'a, $T, I, Iptr>,
x0: CsVecViewI<'a, $T, I>,
b: CsVecViewI<'a, $T, I>,
) -> Self {
let r = &b - &(&a.view() * &x0.view()).view();
let rhat = r.to_owned();
let p = r.to_owned();
let err = (&r).l2_norm();
let rho = err * err;
let x = x0.to_owned();
Self {
iteration_count: 0,
soft_restart_threshold: 0.1 * <$T>::one(), // A sensible default
soft_restart_count: 0,
hard_restart_count: 0,
err,
a,
b,
x,
r,
rhat,
p,
rho,
}
}

/// Attempt to solve the system to the given tolerance on normed error,
/// returning an error if convergence is not achieved within the given
/// number of iterations.
pub fn solve(
a: CsMatViewI<'a, $T, I, Iptr>,
x0: CsVecViewI<'a, $T, I>,
b: CsVecViewI<'a, $T, I>,
tol: $T,
max_iter: usize,
) -> Result<
Box<BiCGSTAB<'a, $T, I, Iptr>>,
Box<BiCGSTAB<'a, $T, I, Iptr>>,
> {
let mut solver = Self::new(a, x0, b);
for _ in 0..max_iter {
solver.step();
if solver.err() < tol {
// Check true error, which may not match the running error estimate
// and either continue iterations or return depending on result.
solver.hard_restart();
if solver.err() < tol {
return Ok(Box::new(solver));
}
}
}

// If we ran past our iteration limit, error, but still return results
Err(Box::new(solver))
}

/// Reset the reference direction `rhat` to be equal to `r`
/// to prevent a singularity in `1 / rho`.
pub fn soft_restart(&mut self) {
self.soft_restart_count += 1;
self.rhat = self.r.to_owned();
self.rho = self.err * self.err; // Shortcut to (&self.r).squared_l2_norm();
self.p = self.r.to_owned();
}

/// Recalculate the error vector from scratch using `a` and `b`.
pub fn hard_restart(&mut self) {
self.hard_restart_count += 1;
// Recalculate true error
self.r = &self.b - &(&self.a.view() * &self.x.view()).view();
self.err = (&self.r).l2_norm();
// Recalculate reference directions
self.soft_restart();
self.soft_restart_count -= 1; // Don't increment soft restart count for hard restarts
}

pub fn step(&mut self) -> $T {
self.iteration_count += 1;

// Gradient descent step
let v = &self.a.view() * &self.p.view();
let alpha = self.rho / ((&self.rhat).dot(&v));
let h = &self.x + &self.p.map(|x| x * alpha); // latest estimate of `x`

// Conjugate direction step
let s = &self.r - &v.map(|x| x * alpha); // s = A*h
let t = &self.a.view() * &s.view();
let omega = t.dot(&s) / &t.squared_l2_norm();
self.x = &h.view() + &s.map(|x| omega * x);

// Check error
self.r = &s - &t.map(|x| x * omega);
self.err = (&self.r).l2_norm();

// Prep for next pass
let rho_prev = self.rho;
self.rho = (&self.rhat).dot(&self.r);

// Soft-restart if `rhat` is becoming perpendicular to `r`.
if self.rho.abs() / (self.err * self.err)
< self.soft_restart_threshold
{
self.soft_restart();
} else {
let beta = (self.rho / rho_prev) * (alpha / omega);
self.p = &self.r
+ (&self.p - &v.map(|x| x * omega)).map(|x| x * beta);
}

self.err
}

/// Set the minimum value of `rho` to trigger a soft restart
pub fn with_restart_threshold(mut self, thresh: $T) -> Self {
self.soft_restart_threshold = thresh;
self
}

/// Iteration number
pub fn iteration_count(&self) -> usize {
self.iteration_count
}

/// The minimum value of `rho` to trigger a soft restart
pub fn soft_restart_threshold(&self) -> $T {
self.soft_restart_threshold
}

/// Number of soft restarts that have been done so far
pub fn soft_restart_count(&self) -> usize {
self.soft_restart_count
}

/// Number of soft restarts that have been done so far
pub fn hard_restart_count(&self) -> usize {
self.hard_restart_count
}

/// Latest estimate of normed error
pub fn err(&self) -> $T {
self.err
}

/// `dot(rhat, r)`, a measure of how well-conditioned the
/// update to the gradient descent step direction will be.
pub fn rho(&self) -> $T {
self.rho
}

/// The problem matrix
pub fn a(&self) -> CsMatViewI<'_, $T, I, Iptr> {
self.a.view()
}

/// The latest solution vector
pub fn x(&self) -> CsVecViewI<'_, $T, I> {
self.x.view()
}

/// The objective vector
pub fn b(&self) -> CsVecViewI<'_, $T, I> {
self.b.view()
}

/// Latest residual error vector
pub fn r(&self) -> CsVecViewI<'_, $T, I> {
self.r.view()
}

/// Latest reference direction.
/// `rhat` is arbitrary w/ dot(rhat, r) != 0,
/// and is reset parallel to `r` when needed to avoid
/// `1 / rho` becoming singular.
pub fn rhat(&self) -> CsVecViewI<'_, $T, I> {
self.rhat.view()
}

/// Gradient descent step direction, unscaled
pub fn p(&self) -> CsVecViewI<'_, $T, I> {
self.p.view()
}
}
};
}

bicgstab_impl!(f64);
bicgstab_impl!(f32);

#[cfg(test)]
mod test {
use super::*;
use crate::CsMatI;

#[test]
fn test_bicgstab_f32() {
let a = CsMatI::new_csc(
(4, 4),
vec![0, 2, 4, 6, 8],
vec![0, 3, 1, 2, 1, 2, 0, 3],
vec![1.0, 2., 21., 6., 6., 2., 2., 8.],
);

// Solve Ax=b
let tol = 1e-18;
let max_iter = 50;
let b = CsVecI::new(4, vec![0, 1, 2, 3], vec![1.0; 4]);
let x0 = CsVecI::new(4, vec![0, 1, 2, 3], vec![1.0, 1.0, 1.0, 1.0]);

let res = BiCGSTAB::<'_, f32, _, _>::solve(
a.view(),
x0.view(),
b.view(),
tol,
max_iter,
)
.unwrap();
let b_recovered = &a * &res.x();

println!("Iteration count {:?}", res.iteration_count());
println!("Soft restart count {:?}", res.soft_restart_count());
println!("Hard restart count {:?}", res.hard_restart_count());

// Make sure the solved values match expectation
for (input, output) in
b.to_dense().iter().zip(b_recovered.to_dense().iter())
{
assert!(
(1.0 - input / output).abs() < tol,
"Solved output did not match input"
);
jlogan03 marked this conversation as resolved.
Show resolved Hide resolved
}
}

#[test]
fn test_bicgstab_f64() {
let a = CsMatI::new_csc(
(4, 4),
vec![0, 2, 4, 6, 8],
vec![0, 3, 1, 2, 1, 2, 0, 3],
vec![1.0, 2., 21., 6., 6., 2., 2., 8.],
);

// Solve Ax=b
let tol = 1e-60;
let max_iter = 50;
let b = CsVecI::new(4, vec![0, 1, 2, 3], vec![1.0; 4]);
let x0 = CsVecI::new(4, vec![0, 1, 2, 3], vec![1.0, 1.0, 1.0, 1.0]);

let res = BiCGSTAB::<'_, f64, _, _>::solve(
a.view(),
x0.view(),
b.view(),
tol,
max_iter,
)
.unwrap();
let b_recovered = &a * &res.x();

println!("Iteration count {:?}", res.iteration_count());
println!("Soft restart count {:?}", res.soft_restart_count());
println!("Hard restart count {:?}", res.hard_restart_count());

// Make sure the solved values match expectation
for (input, output) in
b.to_dense().iter().zip(b_recovered.to_dense().iter())
{
assert!(
(1.0 - input / output).abs() < tol,
jlogan03 marked this conversation as resolved.
Show resolved Hide resolved
"Solved output did not match input"
);
}
}
}