Skip to content

Revert 2 codex/s4を使って直線学習の検証 #162

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 5 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 12 additions & 0 deletions configs/dataset/line.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
_name_: line
seq_len: 24
pred_len: 12
n_train: 1000
n_val: 200
n_test: 200
slope_range: [0.1, 1.0]
intercept_range: [0.0, 1.0]
noise_std: 0.0
seed: 0
__l_max: ${eval:${.seq_len}+${.pred_len}}

2 changes: 1 addition & 1 deletion src/dataloaders/__init__.py
Original file line number Diff line number Diff line change
@@ -1,2 +1,2 @@
from . import audio, basic, et, lm, lra, synthetic, ts, vision
from . import audio, basic, et, lm, lra, synthetic, ts, vision, line
from .base import SequenceDataset
26 changes: 26 additions & 0 deletions src/dataloaders/datasets/line.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
import torch

class LineDataset(torch.utils.data.TensorDataset):
def __init__(self, seq_len=24, pred_len=12, n_samples=1000,
slope_range=(0.1, 1.0), intercept_range=(0.0, 1.0),
noise_std=0.0, seed=0):
self.seq_len = seq_len
self.pred_len = pred_len
self.n_samples = n_samples
self.slope_range = slope_range
self.intercept_range = intercept_range
self.noise_std = noise_std
self.seed = seed

generator = torch.Generator().manual_seed(seed)
total_len = seq_len + pred_len
t = torch.arange(total_len, dtype=torch.float32)
slopes = torch.empty(n_samples).uniform_(slope_range[0], slope_range[1], generator=generator)
intercepts = torch.empty(n_samples).uniform_(intercept_range[0], intercept_range[1], generator=generator)
lines = slopes[:, None] * t + intercepts[:, None]
if noise_std > 0:
lines += noise_std * torch.randn(n_samples, total_len, generator=generator)
x = lines[:, :seq_len].unsqueeze(-1)
y = lines[:, seq_len:].unsqueeze(-1)
super().__init__(x, y)
self.forecast_horizon = pred_len
49 changes: 49 additions & 0 deletions src/dataloaders/line.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,49 @@
from src.dataloaders.base import SequenceDataset
from .datasets.line import LineDataset

class Line(SequenceDataset):
_name_ = "line"
d_input = 1
d_output = 1

@property
def init_defaults(self):
return {
"seq_len": 24,
"pred_len": 12,
"n_train": 1000,
"n_val": 200,
"n_test": 200,
"slope_range": (0.1, 1.0),
"intercept_range": (0.0, 1.0),
"noise_std": 0.0,
"seed": 0,
}

@property
def l_output(self):
return self.pred_len

def setup(self):
self.dataset_train = LineDataset(
self.seq_len, self.pred_len, self.n_train,
self.slope_range, self.intercept_range,
self.noise_std, seed=self.seed
)
self.dataset_val = LineDataset(
self.seq_len, self.pred_len, self.n_val,
self.slope_range, self.intercept_range,
self.noise_std, seed=self.seed + 1
)
self.dataset_test = LineDataset(
self.seq_len, self.pred_len, self.n_test,
self.slope_range, self.intercept_range,
self.noise_std, seed=self.seed + 2
)
# forecast horizon property used by forecasting task
self.dataset_train.forecast_horizon = self.pred_len
self.dataset_val.forecast_horizon = self.pred_len
self.dataset_test.forecast_horizon = self.pred_len

def __str__(self):
return f"line{self.seq_len}_{self.pred_len}"