Skip to content

Commit

Permalink
#13396: Add data parallel support for distilbert model
Browse files Browse the repository at this point in the history
  • Loading branch information
Sudharsan-V committed Dec 3, 2024
1 parent 6499b43 commit fc6e4be
Show file tree
Hide file tree
Showing 9 changed files with 1,349 additions and 0 deletions.
35 changes: 35 additions & 0 deletions models/demos/wormhole/distilbert/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
## Distilbert Model

# Platforms:
WH N300, N150

## Introduction
DistilBERT is a transformers model, smaller and faster than BERT, which was pretrained on the same corpus in a self-supervised fashion, using the BERT base model as a teacher. The DistilBERT Question Answering model is fine-tuned specifically for the task of extracting answers from a given context, making it highly efficient for question-answering applications.

# Details
The entry point to distilebert model is distilbert_for_question_answering in `models/demos/wormhole/distilbert/tt/ttnn_optimized_distilbert.py`. The model picks up certain configs and weights from huggingface pretrained model. We have used `distilbert-base-uncased-distilled-squad` version from huggingface as our reference.

This model, located in `models/demos/wormhole`, supports functionality on both N150 and N300 devices, depending on availability. If the device is N300, the weights and inputs are distributed across the device, allowing the model to run in parallel.

## Sequence Size: 384

Sequence size determines the maximum length of input sequences processed by the model, optimizing performance and compatibility. It's recommended to set the `sequence_size` to 384

## Batch size: 8

Batch Size determines the number of input sequences processed simultaneously during training or inference, impacting computational efficiency and memory usage. It's recommended to set the `batch_size` to 8

Use `pytest --disable-warnings models/demos/wormhole/distilbert/demo/demo.py::test_demo[wormhole_b0-True-models.demos.wormhole.distilbert.tt.ttnn_optimized_distilbert-distilbert-base-uncased-distilled-squad-models/demos/distilbert/demo/input_data.json]` to run the ttnn_optimized_distilbert demo.


If you wish to run the demo with a different input, change the pytest fixture input_loc to the desired location and use `pytest --disable-warnings models/demos/wormhole/distilbert/demo/demo.py::test_demo[wormhole_b0-True-models.demos.wormhole.distilbert.tt.ttnn_optimized_distilbert-distilbert-base-uncased-distilled-squad-models/demos/distilbert/demo/input_data.json]`. This file is expected to have exactly 8 inputs.

Our second demo is designed to run SQuADV2 dataset, run this with `pytest --disable-warnings models/demos/wormhole/distilbert/demo/demo.py::test_demo_squadv2[wormhole_b0-True-3-models.demos.wormhole.distilbert.tt.ttnn_optimized_distilbert-distilbert-base-uncased-distilled-squad]`.

If you wish to run for `n_iterations` samples, use `pytest --disable-warnings models/demos/wormhole/distilbert/demo/demo.py::test_demo_squadv2[wormhole_b0-True-<n_iterations>-models.demos.wormhole.distilbert.tt.ttnn_optimized_distilbert-distilbert-base-uncased-distilled-squad]`

## Inputs

The demo receives inputs from respective input_data.json by default. To modify the inputs or specify a different path, adjust the input_path parameter in the command accordingly. It's recommended to avoid direct modifications to the input_data.json file.

# Owner Sudharsan Vijayaraghavan
345 changes: 345 additions & 0 deletions models/demos/wormhole/distilbert/demo/demo.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,345 @@
# SPDX-FileCopyrightText: © 2023 Tenstorrent Inc.
# SPDX-License-Identifier: Apache-2.0
import json
import pytest
import torch
from loguru import logger
import ttnn
from models.utility_functions import (
disable_compilation_reports,
disable_persistent_kernel_cache,
profiler,
)
from models.demos.wormhole.distilbert.tt import ttnn_optimized_distilbert
from models.demos.wormhole.distilbert.distilbert_utils import (
squadv2_1K_samples_input,
squadv2_answer_decode_batch,
)
from ttnn.model_preprocessing import (
preprocess_model_parameters,
)
from models.utility_functions import is_wormhole_b0, skip_for_grayskull
from transformers import DistilBertForQuestionAnswering, AutoTokenizer, pipeline
import evaluate


def load_inputs(input_path, batch):
with open(input_path) as f:
input_data = json.load(f)
assert len(input_data) >= batch, f"Input data needs to have at least {batch} (batch size) entries."
context = []
question = []
for i in range(batch):
context.append(input_data[i]["context"])
question.append(input_data[i]["question"])
return context, question


def run_distilbert_question_and_answering_inference(
model_name,
batch_size,
sequence_size,
distilbert,
model_location_generator,
input_path,
mesh_device,
):
disable_persistent_kernel_cache()

HF_model = DistilBertForQuestionAnswering.from_pretrained(model_name)
HF_model.eval()
tt_model_name = f"ttnn_{model_name}_optimized"

inputs_mesh_mapper = ttnn.ShardTensorToMesh(mesh_device, dim=0)
weights_mesh_mapper = ttnn.ReplicateTensorToMesh(mesh_device)
output_mesh_composer = ttnn.ConcatMeshToTensor(mesh_device, dim=0)

if ttnn.GetNumAvailableDevices() == 2:
batch_size = batch_size * 2

profiler.start(f"preprocessing_parameter")

with ttnn.distribute(ttnn.ReplicateTensorToMesh(mesh_device)):
parameters = preprocess_model_parameters(
model_name=tt_model_name,
initialize_model=lambda: HF_model,
custom_preprocessor=ttnn_optimized_distilbert.custom_preprocessor,
device=mesh_device,
)
profiler.end(f"preprocessing_parameter")

# set up tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
config = HF_model.config
nlp = pipeline("question-answering", model=HF_model, tokenizer=tokenizer)

context, question = load_inputs(input_path, batch_size)
preprocess_params, _, postprocess_params = nlp._sanitize_parameters(max_seq_len=sequence_size, padding="max_length")
inputs = nlp._args_parser({"question": question, "context": context})
preprocessed_inputs = []
for i in range(batch_size):
model_input = next(nlp.preprocess(inputs[0][i], **preprocess_params))
single_input = {
"example": model_input["example"],
"inputs": model_input,
}
preprocessed_inputs.append(single_input)

distilbert_input = tokenizer(
question,
context,
max_length=sequence_size,
padding="max_length",
truncation=True,
return_attention_mask=True,
return_tensors="pt",
)

profiler.start(f"preprocessing_input")
position_ids = torch.arange(config.max_position_embeddings).expand((1, -1))
position_ids = torch.cat([position_ids] * batch_size, dim=0)
input_ids, position_ids, attention_mask = distilbert.preprocess_inputs(
distilbert_input["input_ids"],
position_ids,
distilbert_input["attention_mask"],
device=mesh_device,
mesh_mapper=inputs_mesh_mapper,
)
profiler.end(f"preprocessing_input")

mask_reshp = (batch_size, 1, 1, attention_mask.shape[1])
score_shape = (batch_size, 12, 384, 384)

mask = (distilbert_input["attention_mask"] == 0).view(mask_reshp).expand(score_shape)
min_val = torch.zeros(score_shape)
min_val_tensor = min_val.masked_fill(mask, torch.tensor(torch.finfo(torch.bfloat16).min))
negative_val = torch.zeros(score_shape)
negative_val_tensor = negative_val.masked_fill(mask, -1)

min_val_tensor = ttnn.from_torch(
min_val_tensor, dtype=ttnn.bfloat16, layout=ttnn.TILE_LAYOUT, mesh_mapper=inputs_mesh_mapper, device=mesh_device
)

negative_val_tensor = ttnn.from_torch(
negative_val_tensor,
dtype=ttnn.bfloat16,
layout=ttnn.TILE_LAYOUT,
mesh_mapper=inputs_mesh_mapper,
device=mesh_device,
)

profiler.start(f"inference_time")
tt_output = ttnn_optimized_distilbert.distilbert_for_question_answering(
config,
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
parameters=parameters,
device=mesh_device,
min_val_tensor=min_val_tensor,
negative_val_tensor=negative_val_tensor,
mesh_mapper=weights_mesh_mapper,
ip_mesh_mapper=inputs_mesh_mapper,
)
profiler.end(f"inference_time")

tt_output = (
ttnn.to_torch(ttnn.from_device(tt_output), mesh_composer=output_mesh_composer)
.reshape(batch_size, 1, sequence_size, -1)
.to(torch.float32)
)
tt_start_logits = tt_output[..., :, 0].squeeze(1)
tt_end_logits = tt_output[..., :, 1].squeeze(1)
model_answers = {}

profiler.start("post_processing_output_to_string")
for i in range(batch_size):
tt_res = {
"start": tt_start_logits[i],
"end": tt_end_logits[i],
"example": preprocessed_inputs[i]["example"],
**preprocessed_inputs[i]["inputs"],
}
tt_answer = nlp.postprocess([tt_res], **postprocess_params)
logger.info(f"answer: {tt_answer['answer']}\n")
model_answers[i] = tt_answer["answer"]
profiler.end("post_processing_output_to_string")

measurements = {
"preprocessing_parameter": profiler.get("preprocessing_parameter"),
"preprocessing_input": profiler.get("preprocessing_input"),
"inference_time": profiler.get("inference_time"),
"post_processing": profiler.get("post_processing_output_to_string"),
}
logger.info(f"preprocessing_parameter: {measurements['preprocessing_parameter']} s")
logger.info(f"preprocessing_input: {measurements['preprocessing_input']} s")
logger.info(f"inference_time: {measurements['inference_time']} s")
logger.info(f"post_processing : {measurements['post_processing']} s")
return measurements


def run_distilbert_question_and_answering_inference_squad_v2(
use_program_cache,
model_name,
batch_size,
sequence_size,
distilbert,
model_location_generator,
n_iterations,
mesh_device,
):
disable_persistent_kernel_cache()
HF_model = DistilBertForQuestionAnswering.from_pretrained(model_name)
HF_model.eval()

tt_model_name = f"ttnn_{model_name}_optimized"

inputs_mesh_mapper = ttnn.ShardTensorToMesh(mesh_device, dim=0)
weights_mesh_mapper = ttnn.ReplicateTensorToMesh(mesh_device)
output_mesh_composer = ttnn.ConcatMeshToTensor(mesh_device, dim=0)
if ttnn.GetNumAvailableDevices() == 2:
batch_size = batch_size * 2

with ttnn.distribute(ttnn.ReplicateTensorToMesh(mesh_device)):
parameters = preprocess_model_parameters(
model_name=tt_model_name,
initialize_model=lambda: HF_model,
custom_preprocessor=ttnn_optimized_distilbert.custom_preprocessor,
device=mesh_device,
)

# set up tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
config = HF_model.config

nlp = pipeline("question-answering", model=HF_model, tokenizer=tokenizer)
attention_mask = True
token_type_ids = False
inputs_squadv2 = squadv2_1K_samples_input(tokenizer, sequence_size, attention_mask, token_type_ids, batch_size)
squad_metric = evaluate.load("squad_v2")
position_ids = torch.arange(config.max_position_embeddings).expand((1, -1))
position_ids = torch.cat([position_ids] * batch_size, dim=0)

with torch.no_grad():
pred_labels = []
cpu_pred_labels = []
true_labels = []
i = 0
for batch in inputs_squadv2:
if i < n_iterations:
batch_data = batch[0]
curr_batch_size = batch_data["input_ids"].shape[0]
ttnn_distilbert_inputs = distilbert.preprocess_inputs(
batch_data["input_ids"],
position_ids,
batch_data["attention_mask"],
device=mesh_device,
mesh_mapper=inputs_mesh_mapper,
)
mask_reshp = (batch_size, 1, 1, batch_data["attention_mask"].shape[1])
score_shape = (batch_size, 12, 384, 384)

mask = (batch_data["attention_mask"] == 0).view(mask_reshp).expand(score_shape)
min_val = torch.zeros(score_shape)
min_val_tensor = min_val.masked_fill(mask, torch.tensor(torch.finfo(torch.bfloat16).min))
negative_val = torch.zeros(score_shape)
negative_val_tensor = negative_val.masked_fill(mask, -1)
min_val_tensor = ttnn.from_torch(
min_val_tensor,
dtype=ttnn.bfloat16,
layout=ttnn.TILE_LAYOUT,
mesh_mapper=inputs_mesh_mapper,
device=mesh_device,
)

negative_val_tensor = ttnn.from_torch(
negative_val_tensor,
dtype=ttnn.bfloat16,
layout=ttnn.TILE_LAYOUT,
mesh_mapper=inputs_mesh_mapper,
device=mesh_device,
)

tt_output = ttnn_optimized_distilbert.distilbert_for_question_answering(
config,
input_ids=ttnn_distilbert_inputs[0],
attention_mask=ttnn_distilbert_inputs[2],
position_ids=ttnn_distilbert_inputs[1],
parameters=parameters,
device=mesh_device,
min_val_tensor=min_val_tensor,
negative_val_tensor=negative_val_tensor,
mesh_mapper=weights_mesh_mapper,
ip_mesh_mapper=inputs_mesh_mapper,
)
tt_output = (
ttnn.to_torch(tt_output, mesh_composer=output_mesh_composer)
.reshape(batch_size, 1, sequence_size, -1)
.to(torch.float32)
)
cpu_output = HF_model(**batch_data)
references = batch[1]
question = batch[2]
context = batch[3]
cpu_predictions, tt_predictions = squadv2_answer_decode_batch(
HF_model,
tokenizer,
nlp,
references,
cpu_output,
tt_output,
curr_batch_size,
question,
context,
)
pred_labels.extend(tt_predictions)
cpu_pred_labels.extend(cpu_predictions)
true_labels.extend(references)
del tt_output
i += 1
eval_score = squad_metric.compute(predictions=pred_labels, references=true_labels)
cpu_eval_score = squad_metric.compute(predictions=cpu_pred_labels, references=true_labels)
logger.info(f"\tTT_Eval: exact: {eval_score['exact']} -- F1: {eval_score['f1']}")
logger.info(f"\tCPU_Eval: exact: {cpu_eval_score['exact']} -- F1: {cpu_eval_score['f1']}")


@skip_for_grayskull()
@pytest.mark.parametrize(
"model_name, input_loc",
((["distilbert-base-uncased-distilled-squad", "models/demos/distilbert/demo/input_data.json"]),),
)
@pytest.mark.parametrize("distilbert", [ttnn_optimized_distilbert])
def test_demo(input_loc, model_name, distilbert, model_location_generator, mesh_device):
disable_persistent_kernel_cache()
disable_compilation_reports()
return run_distilbert_question_and_answering_inference(
model_name=model_name,
batch_size=8,
sequence_size=384,
distilbert=distilbert,
model_location_generator=model_location_generator,
input_path=input_loc,
mesh_device=mesh_device,
)


@skip_for_grayskull()
@pytest.mark.parametrize("model_name", ["distilbert-base-uncased-distilled-squad"])
@pytest.mark.parametrize("distilbert", [ttnn_optimized_distilbert])
@pytest.mark.parametrize(
"n_iterations",
((3),),
)
def test_demo_squadv2(model_name, distilbert, n_iterations, model_location_generator, use_program_cache, mesh_device):
disable_persistent_kernel_cache()
disable_compilation_reports()
return run_distilbert_question_and_answering_inference_squad_v2(
use_program_cache=use_program_cache,
model_name=model_name,
batch_size=8,
sequence_size=384,
distilbert=distilbert,
model_location_generator=model_location_generator,
n_iterations=n_iterations,
mesh_device=mesh_device,
)
Loading

0 comments on commit fc6e4be

Please sign in to comment.