forked from huggingface/diffusers
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' of github.com:huggingface/diffusers
- Loading branch information
Showing
10 changed files
with
574 additions
and
108 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,8 @@ | ||
accelerate>=0.31.0 | ||
torchvision | ||
transformers>=4.41.2 | ||
ftfy | ||
tensorboard | ||
Jinja2 | ||
peft>=0.11.1 | ||
sentencepiece |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,203 @@ | ||
# coding=utf-8 | ||
# Copyright 2024 HuggingFace Inc. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import logging | ||
import os | ||
import shutil | ||
import sys | ||
import tempfile | ||
|
||
from diffusers import DiffusionPipeline, FluxTransformer2DModel | ||
|
||
|
||
sys.path.append("..") | ||
from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402 | ||
|
||
|
||
logging.basicConfig(level=logging.DEBUG) | ||
|
||
logger = logging.getLogger() | ||
stream_handler = logging.StreamHandler(sys.stdout) | ||
logger.addHandler(stream_handler) | ||
|
||
|
||
class DreamBoothFlux(ExamplesTestsAccelerate): | ||
instance_data_dir = "docs/source/en/imgs" | ||
instance_prompt = "photo" | ||
pretrained_model_name_or_path = "hf-internal-testing/tiny-flux-pipe" | ||
script_path = "examples/dreambooth/train_dreambooth_flux.py" | ||
|
||
def test_dreambooth(self): | ||
with tempfile.TemporaryDirectory() as tmpdir: | ||
test_args = f""" | ||
{self.script_path} | ||
--pretrained_model_name_or_path {self.pretrained_model_name_or_path} | ||
--instance_data_dir {self.instance_data_dir} | ||
--instance_prompt {self.instance_prompt} | ||
--resolution 64 | ||
--train_batch_size 1 | ||
--gradient_accumulation_steps 1 | ||
--max_train_steps 2 | ||
--learning_rate 5.0e-04 | ||
--scale_lr | ||
--lr_scheduler constant | ||
--lr_warmup_steps 0 | ||
--output_dir {tmpdir} | ||
""".split() | ||
|
||
run_command(self._launch_args + test_args) | ||
# save_pretrained smoke test | ||
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "transformer", "diffusion_pytorch_model.safetensors"))) | ||
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json"))) | ||
|
||
def test_dreambooth_checkpointing(self): | ||
with tempfile.TemporaryDirectory() as tmpdir: | ||
# Run training script with checkpointing | ||
# max_train_steps == 4, checkpointing_steps == 2 | ||
# Should create checkpoints at steps 2, 4 | ||
|
||
initial_run_args = f""" | ||
{self.script_path} | ||
--pretrained_model_name_or_path {self.pretrained_model_name_or_path} | ||
--instance_data_dir {self.instance_data_dir} | ||
--instance_prompt {self.instance_prompt} | ||
--resolution 64 | ||
--train_batch_size 1 | ||
--gradient_accumulation_steps 1 | ||
--max_train_steps 4 | ||
--learning_rate 5.0e-04 | ||
--scale_lr | ||
--lr_scheduler constant | ||
--lr_warmup_steps 0 | ||
--output_dir {tmpdir} | ||
--checkpointing_steps=2 | ||
--seed=0 | ||
""".split() | ||
|
||
run_command(self._launch_args + initial_run_args) | ||
|
||
# check can run the original fully trained output pipeline | ||
pipe = DiffusionPipeline.from_pretrained(tmpdir) | ||
pipe(self.instance_prompt, num_inference_steps=1) | ||
|
||
# check checkpoint directories exist | ||
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-2"))) | ||
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-4"))) | ||
|
||
# check can run an intermediate checkpoint | ||
transformer = FluxTransformer2DModel.from_pretrained(tmpdir, subfolder="checkpoint-2/transformer") | ||
pipe = DiffusionPipeline.from_pretrained(self.pretrained_model_name_or_path, transformer=transformer) | ||
pipe(self.instance_prompt, num_inference_steps=1) | ||
|
||
# Remove checkpoint 2 so that we can check only later checkpoints exist after resuming | ||
shutil.rmtree(os.path.join(tmpdir, "checkpoint-2")) | ||
|
||
# Run training script for 7 total steps resuming from checkpoint 4 | ||
|
||
resume_run_args = f""" | ||
{self.script_path} | ||
--pretrained_model_name_or_path {self.pretrained_model_name_or_path} | ||
--instance_data_dir {self.instance_data_dir} | ||
--instance_prompt {self.instance_prompt} | ||
--resolution 64 | ||
--train_batch_size 1 | ||
--gradient_accumulation_steps 1 | ||
--max_train_steps 6 | ||
--learning_rate 5.0e-04 | ||
--scale_lr | ||
--lr_scheduler constant | ||
--lr_warmup_steps 0 | ||
--output_dir {tmpdir} | ||
--checkpointing_steps=2 | ||
--resume_from_checkpoint=checkpoint-4 | ||
--seed=0 | ||
""".split() | ||
|
||
run_command(self._launch_args + resume_run_args) | ||
|
||
# check can run new fully trained pipeline | ||
pipe = DiffusionPipeline.from_pretrained(tmpdir) | ||
pipe(self.instance_prompt, num_inference_steps=1) | ||
|
||
# check old checkpoints do not exist | ||
self.assertFalse(os.path.isdir(os.path.join(tmpdir, "checkpoint-2"))) | ||
|
||
# check new checkpoints exist | ||
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-4"))) | ||
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-6"))) | ||
|
||
def test_dreambooth_checkpointing_checkpoints_total_limit(self): | ||
with tempfile.TemporaryDirectory() as tmpdir: | ||
test_args = f""" | ||
{self.script_path} | ||
--pretrained_model_name_or_path={self.pretrained_model_name_or_path} | ||
--instance_data_dir={self.instance_data_dir} | ||
--output_dir={tmpdir} | ||
--instance_prompt={self.instance_prompt} | ||
--resolution=64 | ||
--train_batch_size=1 | ||
--gradient_accumulation_steps=1 | ||
--max_train_steps=6 | ||
--checkpoints_total_limit=2 | ||
--checkpointing_steps=2 | ||
""".split() | ||
|
||
run_command(self._launch_args + test_args) | ||
|
||
self.assertEqual( | ||
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | ||
{"checkpoint-4", "checkpoint-6"}, | ||
) | ||
|
||
def test_dreambooth_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self): | ||
with tempfile.TemporaryDirectory() as tmpdir: | ||
test_args = f""" | ||
{self.script_path} | ||
--pretrained_model_name_or_path={self.pretrained_model_name_or_path} | ||
--instance_data_dir={self.instance_data_dir} | ||
--output_dir={tmpdir} | ||
--instance_prompt={self.instance_prompt} | ||
--resolution=64 | ||
--train_batch_size=1 | ||
--gradient_accumulation_steps=1 | ||
--max_train_steps=4 | ||
--checkpointing_steps=2 | ||
""".split() | ||
|
||
run_command(self._launch_args + test_args) | ||
|
||
self.assertEqual( | ||
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | ||
{"checkpoint-2", "checkpoint-4"}, | ||
) | ||
|
||
resume_run_args = f""" | ||
{self.script_path} | ||
--pretrained_model_name_or_path={self.pretrained_model_name_or_path} | ||
--instance_data_dir={self.instance_data_dir} | ||
--output_dir={tmpdir} | ||
--instance_prompt={self.instance_prompt} | ||
--resolution=64 | ||
--train_batch_size=1 | ||
--gradient_accumulation_steps=1 | ||
--max_train_steps=8 | ||
--checkpointing_steps=2 | ||
--resume_from_checkpoint=checkpoint-4 | ||
--checkpoints_total_limit=2 | ||
""".split() | ||
|
||
run_command(self._launch_args + resume_run_args) | ||
|
||
self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-6", "checkpoint-8"}) |
Oops, something went wrong.