forked from huggingface/diffusers
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
56baa31
commit 93b3680
Showing
3 changed files
with
104 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,83 @@ | ||
import argparse | ||
import logging | ||
import os | ||
from pathlib import Path | ||
|
||
import torch | ||
from torch.utils.data import DataLoader | ||
from torchvision import transforms | ||
from accelerate import Accelerator | ||
from accelerate.logging import get_logger | ||
from accelerate.utils import set_seed | ||
|
||
from diffusers import DDPMPipeline, DDPMScheduler | ||
from diffusers.models.ddpm_model import DDPMModel | ||
|
||
logger = get_logger(__name__, log_level="INFO") | ||
|
||
|
||
def parse_args(): | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--pretrained_model_name_or_path", type=str, required=True, | ||
help="Path to pretrained model or model identifier from huggingface.co/models.") | ||
parser.add_argument("--output_dir", type=str, default="ddpm_training", | ||
help="The output directory where the model predictions and checkpoints will be written.") | ||
parser.add_argument("--train_batch_size", type=int, default=16, help="Batch size for the training dataloader.") | ||
parser.add_argument("--learning_rate", type=float, default=0.0001, help="Initial learning rate.") | ||
parser.add_argument("--max_train_steps", type=int, default=1000, help="Total number of training steps.") | ||
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") | ||
return parser.parse_args() | ||
|
||
|
||
def main(args): | ||
if args.seed is not None: | ||
set_seed(args.seed) | ||
|
||
accelerator = Accelerator() | ||
|
||
if accelerator.is_main_process: | ||
os.makedirs(args.output_dir, exist_ok=True) | ||
|
||
# Initialize model and scheduler | ||
unet = ... # Initialize UNet model | ||
scheduler = DDPMScheduler() | ||
model = DDPMModel(unet=unet, scheduler=scheduler) | ||
|
||
# Prepare optimizer | ||
optimizer = torch.optim.AdamW(model.parameters(), lr=args.learning_rate) | ||
|
||
# Prepare data | ||
transform = transforms.Compose([ | ||
transforms.Resize((64, 64)), | ||
transforms.ToTensor(), | ||
]) | ||
dataset = ... # Load your dataset here | ||
dataloader = DataLoader(dataset, batch_size=args.train_batch_size, shuffle=True) | ||
|
||
# Training loop | ||
for step in range(args.max_train_steps): | ||
for batch in dataloader: | ||
# Forward diffusion | ||
x_0 = batch["image"].to(accelerator.device) | ||
timesteps = torch.randint(0, scheduler.num_train_timesteps, (x_0.size(0),), device=accelerator.device) | ||
loss = model.forward_diffusion(x_0, timesteps) | ||
|
||
# Backward pass | ||
accelerator.backward(loss) | ||
optimizer.step() | ||
optimizer.zero_grad() | ||
|
||
if step % 100 == 0: | ||
logger.info(f"Step {step}: loss = {loss.item()}") | ||
|
||
if step >= args.max_train_steps: | ||
break | ||
|
||
# Save the model | ||
if accelerator.is_main_process: | ||
model.save_pretrained(args.output_dir) | ||
|
||
|
||
if __name__ == "__main__": | ||
args = parse_args() | ||
main(args) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
import torch | ||
from diffusers import DDPMPipeline, DDPMScheduler | ||
|
||
class DDPMModel: | ||
def __init__(self, unet, scheduler): | ||
self.unet = unet | ||
self.scheduler = scheduler | ||
|
||
def forward_diffusion(self, x_0, timesteps): | ||
# Implement forward diffusion process | ||
pass | ||
|
||
def denoise(self, x_t, timesteps): | ||
# Implement denoising process | ||
pass | ||
|
||
def generate(self, batch_size=1, num_inference_steps=1000, output_type="pil"): | ||
# Implement image generation process | ||
pass |