forked from huggingface/diffusers
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Single File] Add single file support for AutoencoderDC (huggingface#…
…10183) * update * update * update
- Loading branch information
Showing
4 changed files
with
243 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
126 changes: 126 additions & 0 deletions
126
tests/single_file/test_model_autoencoder_dc_single_file.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,126 @@ | ||
# coding=utf-8 | ||
# Copyright 2024 HuggingFace Inc. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import gc | ||
import unittest | ||
|
||
import torch | ||
|
||
from diffusers import ( | ||
AutoencoderDC, | ||
) | ||
from diffusers.utils.testing_utils import ( | ||
backend_empty_cache, | ||
enable_full_determinism, | ||
load_hf_numpy, | ||
numpy_cosine_similarity_distance, | ||
require_torch_accelerator, | ||
slow, | ||
torch_device, | ||
) | ||
|
||
|
||
enable_full_determinism() | ||
|
||
|
||
@slow | ||
@require_torch_accelerator | ||
class AutoencoderDCSingleFileTests(unittest.TestCase): | ||
model_class = AutoencoderDC | ||
ckpt_path = "https://huggingface.co/mit-han-lab/dc-ae-f32c32-sana-1.0/blob/main/model.safetensors" | ||
repo_id = "mit-han-lab/dc-ae-f32c32-sana-1.0-diffusers" | ||
main_input_name = "sample" | ||
base_precision = 1e-2 | ||
|
||
def setUp(self): | ||
super().setUp() | ||
gc.collect() | ||
backend_empty_cache(torch_device) | ||
|
||
def tearDown(self): | ||
super().tearDown() | ||
gc.collect() | ||
backend_empty_cache(torch_device) | ||
|
||
def get_file_format(self, seed, shape): | ||
return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy" | ||
|
||
def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False): | ||
dtype = torch.float16 if fp16 else torch.float32 | ||
image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype) | ||
return image | ||
|
||
def test_single_file_inference_same_as_pretrained(self): | ||
model_1 = self.model_class.from_pretrained(self.repo_id).to(torch_device) | ||
model_2 = self.model_class.from_single_file(self.ckpt_path, config=self.repo_id).to(torch_device) | ||
|
||
image = self.get_sd_image(33) | ||
|
||
with torch.no_grad(): | ||
sample_1 = model_1(image).sample | ||
sample_2 = model_2(image).sample | ||
|
||
assert sample_1.shape == sample_2.shape | ||
|
||
output_slice_1 = sample_1.flatten().float().cpu() | ||
output_slice_2 = sample_2.flatten().float().cpu() | ||
|
||
assert numpy_cosine_similarity_distance(output_slice_1, output_slice_2) < 1e-4 | ||
|
||
def test_single_file_components(self): | ||
model = self.model_class.from_pretrained(self.repo_id) | ||
model_single_file = self.model_class.from_single_file(self.ckpt_path) | ||
|
||
PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] | ||
for param_name, param_value in model_single_file.config.items(): | ||
if param_name in PARAMS_TO_IGNORE: | ||
continue | ||
assert ( | ||
model.config[param_name] == param_value | ||
), f"{param_name} differs between pretrained loading and single file loading" | ||
|
||
def test_single_file_in_type_variant_components(self): | ||
# `in` variant checkpoints require passing in a `config` parameter | ||
# in order to set the scaling factor correctly. | ||
# `in` and `mix` variants have the same keys and we cannot automatically infer a scaling factor. | ||
# We default to using teh `mix` config | ||
repo_id = "mit-han-lab/dc-ae-f128c512-in-1.0-diffusers" | ||
ckpt_path = "https://huggingface.co/mit-han-lab/dc-ae-f128c512-in-1.0/blob/main/model.safetensors" | ||
|
||
model = self.model_class.from_pretrained(repo_id) | ||
model_single_file = self.model_class.from_single_file(ckpt_path, config=repo_id) | ||
|
||
PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] | ||
for param_name, param_value in model_single_file.config.items(): | ||
if param_name in PARAMS_TO_IGNORE: | ||
continue | ||
assert ( | ||
model.config[param_name] == param_value | ||
), f"{param_name} differs between pretrained loading and single file loading" | ||
|
||
def test_single_file_mix_type_variant_components(self): | ||
repo_id = "mit-han-lab/dc-ae-f128c512-mix-1.0-diffusers" | ||
ckpt_path = "https://huggingface.co/mit-han-lab/dc-ae-f128c512-mix-1.0/blob/main/model.safetensors" | ||
|
||
model = self.model_class.from_pretrained(repo_id) | ||
model_single_file = self.model_class.from_single_file(ckpt_path, config=repo_id) | ||
|
||
PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] | ||
for param_name, param_value in model_single_file.config.items(): | ||
if param_name in PARAMS_TO_IGNORE: | ||
continue | ||
assert ( | ||
model.config[param_name] == param_value | ||
), f"{param_name} differs between pretrained loading and single file loading" |