Skip to content

Commit

Permalink
huggingface#7535 Update FloatTensor type hints to Tensor (huggingface…
Browse files Browse the repository at this point in the history
…#7883)

* find & replace all FloatTensors to Tensor

* apply formatting

* Update torch.FloatTensor to torch.Tensor in the remaining files

* formatting

* Fix the rest of the places where FloatTensor is used as well as in documentation

* formatting

* Update new file from FloatTensor to Tensor
  • Loading branch information
vanakema authored May 10, 2024
1 parent 04f4bd5 commit be4afa0
Show file tree
Hide file tree
Showing 275 changed files with 3,765 additions and 3,824 deletions.
6 changes: 3 additions & 3 deletions docs/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -242,10 +242,10 @@ Here's an example of a tuple return, comprising several objects:

```
Returns:
`tuple(torch.FloatTensor)` comprising various elements depending on the configuration ([`BertConfig`]) and inputs:
- ** loss** (*optional*, returned when `masked_lm_labels` is provided) `torch.FloatTensor` of shape `(1,)` --
`tuple(torch.Tensor)` comprising various elements depending on the configuration ([`BertConfig`]) and inputs:
- ** loss** (*optional*, returned when `masked_lm_labels` is provided) `torch.Tensor` of shape `(1,)` --
Total loss is the sum of the masked language modeling loss and the next sequence prediction (classification) loss.
- **prediction_scores** (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`) --
- **prediction_scores** (`torch.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`) --
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
```

Expand Down
2 changes: 1 addition & 1 deletion docs/source/en/optimization/memory.md
Original file line number Diff line number Diff line change
Expand Up @@ -261,7 +261,7 @@ from dataclasses import dataclass

@dataclass
class UNet2DConditionOutput:
sample: torch.FloatTensor
sample: torch.Tensor


pipe = StableDiffusionPipeline.from_pretrained(
Expand Down
2 changes: 1 addition & 1 deletion docs/source/ko/optimization/fp16.md
Original file line number Diff line number Diff line change
Expand Up @@ -339,7 +339,7 @@ from dataclasses import dataclass

@dataclass
class UNet2DConditionOutput:
sample: torch.FloatTensor
sample: torch.Tensor


pipe = StableDiffusionPipeline.from_pretrained(
Expand Down
16 changes: 8 additions & 8 deletions examples/community/bit_diffusion.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,9 +44,9 @@ def bits_to_decimal(x, bits=BITS):
# modified scheduler step functions for clamping the predicted x_0 between -bit_scale and +bit_scale
def ddim_bit_scheduler_step(
self,
model_output: torch.FloatTensor,
model_output: torch.Tensor,
timestep: int,
sample: torch.FloatTensor,
sample: torch.Tensor,
eta: float = 0.0,
use_clipped_model_output: bool = True,
generator=None,
Expand All @@ -56,9 +56,9 @@ def ddim_bit_scheduler_step(
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.FloatTensor`): direct output from learned diffusion model.
model_output (`torch.Tensor`): direct output from learned diffusion model.
timestep (`int`): current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
sample (`torch.Tensor`):
current instance of sample being created by diffusion process.
eta (`float`): weight of noise for added noise in diffusion step.
use_clipped_model_output (`bool`): TODO
Expand Down Expand Up @@ -134,9 +134,9 @@ def ddim_bit_scheduler_step(

def ddpm_bit_scheduler_step(
self,
model_output: torch.FloatTensor,
model_output: torch.Tensor,
timestep: int,
sample: torch.FloatTensor,
sample: torch.Tensor,
prediction_type="epsilon",
generator=None,
return_dict: bool = True,
Expand All @@ -145,9 +145,9 @@ def ddpm_bit_scheduler_step(
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.FloatTensor`): direct output from learned diffusion model.
model_output (`torch.Tensor`): direct output from learned diffusion model.
timestep (`int`): current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
sample (`torch.Tensor`):
current instance of sample being created by diffusion process.
prediction_type (`str`, default `epsilon`):
indicates whether the model predicts the noise (epsilon), or the samples (`sample`).
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -233,8 +233,8 @@ def cond_fn(
@torch.no_grad()
def __call__(
self,
style_image: Union[torch.FloatTensor, PIL.Image.Image],
content_image: Union[torch.FloatTensor, PIL.Image.Image],
style_image: Union[torch.Tensor, PIL.Image.Image],
content_image: Union[torch.Tensor, PIL.Image.Image],
style_prompt: Optional[str] = None,
content_prompt: Optional[str] = None,
height: Optional[int] = 512,
Expand Down
2 changes: 1 addition & 1 deletion examples/community/clip_guided_stable_diffusion.py
Original file line number Diff line number Diff line change
Expand Up @@ -180,7 +180,7 @@ def __call__(
num_cutouts: Optional[int] = 4,
use_cutouts: Optional[bool] = True,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
latents: Optional[torch.Tensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
):
Expand Down
4 changes: 2 additions & 2 deletions examples/community/clip_guided_stable_diffusion_img2img.py
Original file line number Diff line number Diff line change
Expand Up @@ -306,7 +306,7 @@ def __call__(
prompt: Union[str, List[str]],
height: Optional[int] = 512,
width: Optional[int] = 512,
image: Union[torch.FloatTensor, PIL.Image.Image] = None,
image: Union[torch.Tensor, PIL.Image.Image] = None,
strength: float = 0.8,
num_inference_steps: Optional[int] = 50,
guidance_scale: Optional[float] = 7.5,
Expand All @@ -317,7 +317,7 @@ def __call__(
num_cutouts: Optional[int] = 4,
use_cutouts: Optional[bool] = True,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
latents: Optional[torch.Tensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
):
Expand Down
8 changes: 4 additions & 4 deletions examples/community/composable_stable_diffusion.py
Original file line number Diff line number Diff line change
Expand Up @@ -354,10 +354,10 @@ def __call__(
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
latents: Optional[torch.Tensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
callback_steps: int = 1,
weights: Optional[str] = "",
):
Expand Down Expand Up @@ -391,7 +391,7 @@ def __call__(
generator (`torch.Generator`, *optional*):
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
deterministic.
latents (`torch.FloatTensor`, *optional*):
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
Expand All @@ -403,7 +403,7 @@ def __call__(
plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
Expand Down
4 changes: 2 additions & 2 deletions examples/community/ddim_noise_comparative_analysis.py
Original file line number Diff line number Diff line change
Expand Up @@ -103,7 +103,7 @@ def prepare_latents(self, image, timestep, batch_size, dtype, device, generator=
@torch.no_grad()
def __call__(
self,
image: Union[torch.FloatTensor, PIL.Image.Image] = None,
image: Union[torch.Tensor, PIL.Image.Image] = None,
strength: float = 0.8,
batch_size: int = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
Expand All @@ -115,7 +115,7 @@ def __call__(
) -> Union[ImagePipelineOutput, Tuple]:
r"""
Args:
image (`torch.FloatTensor` or `PIL.Image.Image`):
image (`torch.Tensor` or `PIL.Image.Image`):
`Image`, or tensor representing an image batch, that will be used as the starting point for the
process.
strength (`float`, *optional*, defaults to 0.8):
Expand Down
28 changes: 14 additions & 14 deletions examples/community/gluegen.py
Original file line number Diff line number Diff line change
Expand Up @@ -205,7 +205,7 @@ def __init__(
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
language_adapter: TranslatorNoLN = None,
tensor_norm: torch.FloatTensor = None,
tensor_norm: torch.Tensor = None,
requires_safety_checker: bool = True,
):
super().__init__()
Expand All @@ -231,7 +231,7 @@ def load_language_adapter(
num_token: int,
dim: int,
dim_out: int,
tensor_norm: torch.FloatTensor,
tensor_norm: torch.Tensor,
mult: int = 2,
depth: int = 5,
):
Expand All @@ -242,7 +242,7 @@ def load_language_adapter(
)
self.language_adapter.load_state_dict(torch.load(model_path))

def _adapt_language(self, prompt_embeds: torch.FloatTensor):
def _adapt_language(self, prompt_embeds: torch.Tensor):
prompt_embeds = prompt_embeds / 3
prompt_embeds = self.language_adapter(prompt_embeds) * (self.tensor_norm / 2)
return prompt_embeds
Expand All @@ -254,8 +254,8 @@ def encode_prompt(
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
lora_scale: Optional[float] = None,
clip_skip: Optional[int] = None,
):
Expand All @@ -275,10 +275,10 @@ def encode_prompt(
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
prompt_embeds (`torch.FloatTensor`, *optional*):
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
Expand Down Expand Up @@ -535,7 +535,7 @@ def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32
data type of the generated embeddings
Returns:
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
`torch.Tensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
"""
assert len(w.shape) == 1
w = w * 1000.0
Expand Down Expand Up @@ -594,9 +594,9 @@ def __call__(
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
Expand Down Expand Up @@ -635,14 +635,14 @@ def __call__(
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.FloatTensor`, *optional*):
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
Expand Down
24 changes: 12 additions & 12 deletions examples/community/hd_painter.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,10 +28,10 @@ def __init__(self, mask, token_idx, scale_factor):
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
temb: Optional[torch.FloatTensor] = None,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
temb: Optional[torch.Tensor] = None,
scale: float = 1.0,
) -> torch.Tensor:
# Same as the default AttnProcessor up untill the part where similarity matrix gets saved
Expand Down Expand Up @@ -111,10 +111,10 @@ def __init__(self, transformer_block, mask, token_idx, do_classifier_free_guidan
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
temb: Optional[torch.FloatTensor] = None,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
temb: Optional[torch.Tensor] = None,
scale: float = 1.0,
) -> torch.Tensor:
# Automatically recognize the resolution of the current attention layer and resize the masks accordingly
Expand Down Expand Up @@ -454,7 +454,7 @@ def __call__(
prompt: Union[str, List[str]] = None,
image: PipelineImageInput = None,
mask_image: PipelineImageInput = None,
masked_image_latents: torch.FloatTensor = None,
masked_image_latents: torch.Tensor = None,
height: Optional[int] = None,
width: Optional[int] = None,
padding_mask_crop: Optional[int] = None,
Expand All @@ -467,9 +467,9 @@ def __call__(
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.01,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
ip_adapter_image: Optional[PipelineImageInput] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
Expand Down
20 changes: 10 additions & 10 deletions examples/community/iadb.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,21 +17,21 @@ class IADBScheduler(SchedulerMixin, ConfigMixin):

def step(
self,
model_output: torch.FloatTensor,
model_output: torch.Tensor,
timestep: int,
x_alpha: torch.FloatTensor,
) -> torch.FloatTensor:
x_alpha: torch.Tensor,
) -> torch.Tensor:
"""
Predict the sample at the previous timestep by reversing the ODE. Core function to propagate the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.FloatTensor`): direct output from learned diffusion model. It is the direction from x0 to x1.
model_output (`torch.Tensor`): direct output from learned diffusion model. It is the direction from x0 to x1.
timestep (`float`): current timestep in the diffusion chain.
x_alpha (`torch.FloatTensor`): x_alpha sample for the current timestep
x_alpha (`torch.Tensor`): x_alpha sample for the current timestep
Returns:
`torch.FloatTensor`: the sample at the previous timestep
`torch.Tensor`: the sample at the previous timestep
"""
if self.num_inference_steps is None:
Expand All @@ -53,10 +53,10 @@ def set_timesteps(self, num_inference_steps: int):

def add_noise(
self,
original_samples: torch.FloatTensor,
noise: torch.FloatTensor,
alpha: torch.FloatTensor,
) -> torch.FloatTensor:
original_samples: torch.Tensor,
noise: torch.Tensor,
alpha: torch.Tensor,
) -> torch.Tensor:
return original_samples * alpha + noise * (1 - alpha)

def __len__(self):
Expand Down
4 changes: 2 additions & 2 deletions examples/community/imagic_stable_diffusion.py
Original file line number Diff line number Diff line change
Expand Up @@ -110,7 +110,7 @@ def __init__(
def train(
self,
prompt: Union[str, List[str]],
image: Union[torch.FloatTensor, PIL.Image.Image],
image: Union[torch.Tensor, PIL.Image.Image],
height: Optional[int] = 512,
width: Optional[int] = 512,
generator: Optional[torch.Generator] = None,
Expand Down Expand Up @@ -144,7 +144,7 @@ def train(
generator (`torch.Generator`, *optional*):
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
deterministic.
latents (`torch.FloatTensor`, *optional*):
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
Expand Down
Loading

0 comments on commit be4afa0

Please sign in to comment.