Skip to content

Commit

Permalink
Merge pull request #12 from transferwise/add_more_tests
Browse files Browse the repository at this point in the history
Add more unit tests
  • Loading branch information
bkoseoglu authored Oct 2, 2024
2 parents a37ad85 + 68ef183 commit 7325a88
Show file tree
Hide file tree
Showing 5 changed files with 112 additions and 5 deletions.
3 changes: 0 additions & 3 deletions .github/workflows/test.yml
Original file line number Diff line number Diff line change
Expand Up @@ -4,9 +4,6 @@ on:
pull_request:
branches:
- main
push:
branches:
- main

jobs:
test:
Expand Down
8 changes: 7 additions & 1 deletion .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -23,4 +23,10 @@ hs_err_pid*
build/
out/
.gradle/
bin/
bin/

# Python cache files
__pycache__/
*.py[cod]
*.pyo
*.pyd
2 changes: 1 addition & 1 deletion tests/test_regression.py
Original file line number Diff line number Diff line change
Expand Up @@ -256,4 +256,4 @@ def test_selected_column_values(model_type, data_fixture, task_type, request):
]
assert (
other_features_rows["selected"] > 0
).all(), "The Selected column must have positive values for features other than x7, x8, x9"
).all(), "The Selected column must have positive values for features other than x7, x8, x9"
49 changes: 49 additions & 0 deletions tests/test_shap_feature_generation.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,49 @@
import pytest
import pandas as pd
import numpy as np
from shap_select.select import create_shap_features
import lightgbm as lgb


@pytest.fixture
def sample_data_binary():
"""Generate sample data for binary classification."""
np.random.seed(42)
X = pd.DataFrame(np.random.normal(size=(100, 5)), columns=[f"x{i}" for i in range(5)])
y = (X["x0"] > 0).astype(int)
return X, y


@pytest.fixture
def sample_data_multiclass():
"""Generate sample data for multiclass classification."""
np.random.seed(42)
X = pd.DataFrame(np.random.normal(size=(100, 5)), columns=[f"x{i}" for i in range(5)])
y = np.random.choice([0, 1, 2], size=100)
return X, y


def test_shap_feature_generation_binary(sample_data_binary):
"""Test SHAP feature generation for binary classification."""
X, y = sample_data_binary

model = lgb.LGBMClassifier()
model.fit(X, y)

shap_df = create_shap_features(model, X)
assert isinstance(shap_df, pd.DataFrame), "SHAP output should be a DataFrame"
assert shap_df.shape == X.shape, "SHAP output shape should match input data"
assert shap_df.isnull().sum().sum() == 0, "No missing values expected in SHAP output"


def test_shap_feature_generation_multiclass(sample_data_multiclass):
"""Test SHAP feature generation for multiclass classification."""
X, y = sample_data_multiclass

model = lgb.LGBMClassifier(objective="multiclass", num_class=3)
model.fit(X, y)

shap_df = create_shap_features(model, X, classes=[0, 1, 2])
assert isinstance(shap_df, dict), "SHAP output should be a dictionary for multiclass"
assert all(isinstance(v, pd.DataFrame) for v in shap_df.values()), "Each class should have a DataFrame"
assert shap_df[0].shape == X.shape, "SHAP output shape should match input data for each class"
55 changes: 55 additions & 0 deletions tests/test_significance_calculation.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
import pytest
import pandas as pd
import numpy as np
from shap_select.select import binary_classifier_significance, regression_significance
import statsmodels.api as sm


@pytest.fixture
def shap_features_binary():
"""Generate sample SHAP values for binary classification."""
np.random.seed(42)
return pd.DataFrame(np.random.normal(size=(100, 5)), columns=[f"x{i}" for i in range(5)])


@pytest.fixture
def binary_target():
"""Generate binary target."""
np.random.seed(42)
return pd.Series(np.random.choice([0, 1], size=100))


def test_binary_classifier_significance(shap_features_binary, binary_target):
"""Test significance calculation for binary classification."""
result_df = binary_classifier_significance(shap_features_binary, binary_target, alpha=1e-4)

assert "feature name" in result_df.columns, "Result should contain feature names"
assert "coefficient" in result_df.columns, "Result should contain coefficients"
assert "stat.significance" in result_df.columns, "Result should contain statistical significance"
assert result_df.shape[0] == shap_features_binary.shape[1], "Each feature should have a row in the output"
assert (result_df["stat.significance"] > 0).all(), "All p-values should be non-negative"


@pytest.fixture
def shap_features_regression():
"""Generate sample SHAP values for regression."""
np.random.seed(42)
return pd.DataFrame(np.random.normal(size=(100, 5)), columns=[f"x{i}" for i in range(5)])


@pytest.fixture
def regression_target():
"""Generate regression target."""
np.random.seed(42)
return pd.Series(np.random.normal(size=100))


def test_regression_significance(shap_features_regression, regression_target):
"""Test significance calculation for regression."""
result_df = regression_significance(shap_features_regression, regression_target, alpha=1e-6)

assert "feature name" in result_df.columns, "Result should contain feature names"
assert "coefficient" in result_df.columns, "Result should contain coefficients"
assert "stat.significance" in result_df.columns, "Result should contain statistical significance"
assert result_df.shape[0] == shap_features_regression.shape[1], "Each feature should have a row in the output"
assert (result_df["stat.significance"] > 0).all(), "All p-values should be non-negative"

0 comments on commit 7325a88

Please sign in to comment.