nemo-demo.mp4
- Runs blazing fast
- Generates Python project structures automatically using
uv
- Writes Python code based on task descriptions
- Executes development tasks using AI-generated commands
- Utilizes the
Ollama
,OpenAI
,Claude
, orGemini
language models for intelligent code generation - Ability to import reference documents to guide the task implementation
- Allows importing existing code projects in multiple languages to serve as a reference for the task
- Enables the importation of csv data files to populate databases or graphs
- Implements best practices in Python development automatically
- Writes and runs passing tests using
pytest
up to 80%+ test coverage - Automatically fixes and styles code using
pylint
up to 7+/10 - Calculates and improves the complexity score using
complexipy
to be under 15 - Auto-formats the code with
autopep8
- Shows the token count used for the responses
- Run via UV (uvx)
leetcode
hardsfastapi
orflask
APIsflask
web appsstreamlit
appstkinter
appsjupyter notebook
- Note: Not all runs will be successful with all models
- Python 3.9 or higher
- OpenAI, Claude, or Gemini API KEY
- Mac or Linux
- No GPU requirement
- Install OpenAI, Claude, or GEMINI API KEY for
zsh
shellecho 'export OPENAI_API_KEY="YOUR_API_KEY"' >> ~/.zshrc
orecho 'export ANTHROPIC_API_KEY="YOUR_API_KEY"' >> ~/.zshrc
orecho 'export GEMINI_API_KEY="YOUR_API_KEY"' >> ~/.zshrc
pip install uv
uvx nemo-agent
- to run nemo-agent
- Python 3.9 or higher
- Ollama running
qwen2.5-coder:14b
- Linux with minimum spec of Ubuntu 24.04 with RTX 4070 or;
- Mac with minimum spec of Mac Mini M2 Pro with 16MB
- Ollama install instructions:
curl -fsSL https://ollama.com/install.sh | sh
ollama pull qwen2.5-coder:14b
pip install uv
uvx nemo-agent
- to run nemo-agent
ollama
:uvx nemo-agent --provider ollama
openai
:uvx nemo-agent --provider openai
claude
:uvx nemo-agent --provider claude
gemini
:uvx nemo-agent --provider gemini
- Documentation files must be either: .md (Markdown) or .txt (Text) and be located in a folder
uvx nemo-agent --docs example_folder
- Code files must be either: .py (Python), .php (PHP), .rs (Rust), .js (JavaScript), .ts (TypeScript), .toml (TOML), .json (JSON), .rb (Ruby), or .yaml (YAML) and be located in a folder
uvx nemo-agent --code example_folder
- Data files must be .csv (CSV) and be located in a folder
uvx nemo-agent --data example_folder
uvx nemo-agent "create a fizzbuzz script"
- Prompt file must be markdown (.md) or text files (.txt)
uvx nemo-agent --file example.md
oruvx nemo-agent --file example.txt
cd generated_project_folder
source .venv/bin/activate
python main.py
Tests are automatically created and run.
You many want to skip tests especially if you are generating a UI application.
uvx nemo-agent "create a fizzbuzz script" --tests False
ollama
isqwen2.5-coder:14b
openai
isgpt-4o
claude
isclaude-3-7-sonnet-20250219
gemini
isgemini-2.5-pro-exp-03-25
uvx nemo-agent "my_prompt" --provider openai --model o3-mini
- Supports any 128k input token models
- Supports
o3-mini
,o1-mini
,o1-preview
,o1
,gpt-4o
, andgpt-4o-mini
- Supports
claude-3-7-sonnet-20250219
andclaude-3-5-sonnet-20241022
- Supports
gemini-2.5-pro-exp-03-25
,gemini-2.0-flash
,gemini-1.5-pro
,gemini-1.5-flash
Contributions to Nemo Agent are welcome! Please feel free to submit a Pull Request.
This project is licensed under the MIT License - see the LICENSE file for details.
Nemo Agent generates code using an LLM. Every run is different as the LLM generated code is different. While it strives for accuracy and best practices, the generated code should be reviewed and tested before being used in a production environment.