Skip to content

Add fallback for sparsegpt inversion failure #1578

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 2 commits into
base: main
Choose a base branch
from

Conversation

kylesayrs
Copy link
Collaborator

Purpose

  • Add fallback for spgt inversion failure, which may occur randomly

Copy link

👋 Hi! Thank you for contributing to llm-compressor. Please add the ready label when the PR is ready for review.

Note: This is required to complete the testing suite, please only add the label once the PR is code complete and local testing has been performed.

Copy link
Contributor

@gemini-code-assist gemini-code-assist bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Summary of Changes

Hello @kylesayrs, I'm Gemini Code Assist1! I'm currently reviewing this pull request and will post my feedback shortly. In the meantime, here's a summary to help you and other reviewers quickly get up to speed!

This pull request enhances the robustness of the SparseGPT weight sparsification process by introducing a graceful fallback for numerical instability during Hessian inversion. Instead of crashing when a torch._C._LinAlgError occurs, the system will now log a warning and continue execution by providing a default identity matrix for the inverse Hessian, thereby preventing random failures and improving overall stability.

Highlights

  • Error Handling & Robustness: Implemented a fallback mechanism for torch._C._LinAlgError during Hessian inversion in the sparsify_weight function. Previously, this error would halt execution, but now it logs a warning and proceeds by initializing Hinv and H as identity matrices.
Using Gemini Code Assist

The full guide for Gemini Code Assist can be found on our documentation page, here are some quick tips.

Invoking Gemini

You can request assistance from Gemini at any point in your pull request via creating an issue comment (i.e. comment on the pull request page) using either /gemini <command> or @gemini-code-assist <command>. Below is a summary of the supported commands.

Feature Command Description
Code Review /gemini review Performs a code review for the current pull request in its current state.
Pull Request Summary /gemini summary Provides a summary of the current pull request in its current state.
Comment @gemini-code-assist Responds in comments when explicitly tagged, both in issue comments and review comments.
Help /gemini help Displays a list of available commands.

Customization

To customize Gemini Code Assist for GitHub experience, repository maintainers can create a configuration file and/or provide a custom code review style guide (such as PEP-8 for Python) by creating and adding files to a .gemini/ folder in the base of the repository. Detailed instructions can be found here.

Limitations & Feedback

Gemini Code Assist is currently in preview and may make mistakes. Please leave feedback on any instances where its feedback is incorrect or counter productive. You can react with 👍 and 👎 on @gemini-code-assist comments to provide feedback.

You can also get AI-powered code generation, chat, as well as code reviews directly in the IDE at no cost with the Gemini Code Assist IDE Extension.

Footnotes

  1. Review the Privacy Notices, Generative AI Prohibited Use Policy, Terms of Service, and learn how to configure Gemini Code Assist in GitHub here. Gemini can make mistakes, so double check it and use code with caution.

Copy link
Contributor

@gemini-code-assist gemini-code-assist bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Code Review

This pull request introduces a fallback mechanism for Hessian matrix inversion failures, enhancing the robustness of the SparseGPT process. My review identifies a critical issue where the logger object is used in the new code without being imported, which would lead to a runtime error. I've provided feedback on this and a minor suggestion for code clarity.

Signed-off-by: Kyle Sayers <[email protected]>
@kylesayrs kylesayrs marked this pull request as ready for review June 24, 2025 04:41
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant