Skip to content

wqliu657/mint

Folders and files

NameName
Last commit message
Last commit date

Latest commit

b8f8bdf · Aug 31, 2021

History

30 Commits
Aug 31, 2021
Aug 31, 2021
Aug 20, 2021
Aug 31, 2021
Aug 31, 2021
Aug 20, 2021
Jun 11, 2021
Jun 11, 2021
Aug 31, 2021
Aug 31, 2021
Aug 20, 2021
Aug 23, 2021

Repository files navigation

AI Choreographer: Music Conditioned 3D Dance Generation with AIST++ [ICCV-2021].

Overview

This package contains the model implementation and training infrastructure of our AI Choreographer.

Get started

Pull the code

git clone https://github.com/liruilong940607/mint --recursive

Note here --recursive is important as it will automatically clone the submodule (orbit) as well.

Install dependencies

conda create -n mint python=3.7
conda activate mint
conda install protobuf numpy
pip install tensorflow absl-py tensorflow-datasets librosa

sudo apt-get install libopenexr-dev
pip install --upgrade OpenEXR
pip install tensorflow-graphics tensorflow-graphics-gpu

git clone https://github.com/arogozhnikov/einops /tmp/einops
cd /tmp/einops/ && pip install . -U

git clone https://github.com/google/aistplusplus_api /tmp/aistplusplus_api
cd /tmp/aistplusplus_api && pip install -r requirements.txt && pip install . -U

Note if you meet environment conflicts about numpy, you can try with pip install numpy==1.20.

Get the data

See the website

Get the checkpoint

Download from google drive here, and put them to the folder ./checkpoints/

Run the code

  1. complie protocols
protoc ./mint/protos/*.proto
  1. preprocess dataset into tfrecord
python tools/preprocessing.py \
    --anno_dir="/mnt/data/aist_plusplus_final/" \
    --audio_dir="/mnt/data/AIST/music/" \
    --split=train
python tools/preprocessing.py \
    --anno_dir="/mnt/data/aist_plusplus_final/" \
    --audio_dir="/mnt/data/AIST/music/" \
    --split=testval
  1. run training
python trainer.py --config_path ./configs/fact_v5_deeper_t10_cm12.config --model_dir ./checkpoints

Note you might want to change the batch_size in the config file if you meet OUT-OF-MEMORY issue.

  1. run testing and evaluation
# caching the generated motions (seed included) to `./outputs`
python evaluator.py --config_path ./configs/fact_v5_deeper_t10_cm12.config --model_dir ./checkpoints
# calculate FIDs
python tools/calculate_scores.py

Citation

@inproceedings{li2021dance,
  title={AI Choreographer: Music Conditioned 3D Dance Generation with AIST++},
  author={Ruilong Li and Shan Yang and David A. Ross and Angjoo Kanazawa},
  booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
  year = {2021}
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages