Skip to content

Commit

Permalink
biodiversity indctors - I1 - municpality boundaries correction #146
Browse files Browse the repository at this point in the history
  • Loading branch information
Saif Shabou committed Mar 18, 2022
1 parent 4d414e4 commit 64c0364
Show file tree
Hide file tree
Showing 8 changed files with 46,386 additions and 202 deletions.
1,172 changes: 1,172 additions & 0 deletions baseline-indicators/Urbanshift Greenspace All cities.R

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
Expand Up @@ -56,8 +56,13 @@ col_Black = "#000000"
urbanshift_boundaries = st_read("https://cities-urbanshift.s3.eu-west-3.amazonaws.com/data/boundaries/administrative_boundaries.geojson",
quiet = TRUE)
# select verified boundaries
urbanshift_boundaries = urbanshift_boundaries[urbanshift_boundaries$boundary_use == TRUE, ]
# # select verified boundaries
# urbanshift_boundaries = urbanshift_boundaries[urbanshift_boundaries$boundary_use == TRUE, ]
# change San jose boundary status
urbanshift_boundaries[urbanshift_boundaries$city_name == "CRI-San_Jose" & urbanshift_boundaries$boundary_data_source == "cities360", "boundary_use"] = TRUE
urbanshift_boundaries[urbanshift_boundaries$city_name == "CRI-San_Jose" & urbanshift_boundaries$boundary_data_source == "city_specific", "boundary_use"] = FALSE
# specify the cityid
city_id = "CRI-San_Jose"
Expand Down Expand Up @@ -137,6 +142,7 @@ pal_worldcover <- colorFactor(palette = worldcover_col,
"70","80","90","95","100"),
na.color = "transparent")
# create the map
map = leaflet(city_worldcover, height = 500, width = "100%") %>%
addTiles() %>%
Expand Down Expand Up @@ -271,6 +277,24 @@ This indicator is calculated as the percent of natural area within the city boun

Based on the assumption that,by definition, a city comprises predominantly human-altered landscapes, the maximum score will be accorded to cities with natural areas occupying more than 20% of the total city area.

```{r I1_scores, warning=FALSE, message=FALSE, echo = FALSE, eval = TRUE}
scoring_rules = data.frame("Score" = c("0 POINTS","1 POINTS","2 POINTS","3 POINTS","4 POINTS"),
"Indicator value" = c("< 1.0%",
"1% – 6.9%",
"7.0% – 13.9%",
"14.0% – 20.0%",
"> 20.0%"))
scoring_rules %>%
kable() %>%
kable_styling(bootstrap_options = c("striped", "hover"), full_width = F, font_size = 13) %>%
row_spec(1, bold = T, color = "black", background = "#C0392B") %>%
row_spec(2, bold = T, color = "black", background = "#E67E22") %>%
row_spec(3, bold = T, color = "black", background = "#F4D03F") %>%
row_spec(4, bold = T, color = "black", background = "#2ECC71") %>%
row_spec(5, bold = T, color = "black", background = "#145A32")
```

-**Metropolitan level**:

```{r I1, warning=FALSE, message=FALSE, echo = FALSE, eval = TRUE}
Expand Down Expand Up @@ -321,4 +345,122 @@ biodiversity_indicators %>%
scroll_box(width = "100%", height = "100px")
```

-**Municipality level**:
-**Municipality level**:

```{r I1-map, warning=FALSE, message=FALSE, echo = FALSE, eval = TRUE}
municipalities_I1 = read.csv("./data/biodiversity_indicators_municipality.csv")
boundary_municipality = st_read("./data/boundaries/boundaries-CRI-San_Jose-ADM2.geojson",
quiet = TRUE)
municipalities_I1_geo = left_join(boundary_municipality,
municipalities_I1,
by = c("shapeName.1" = "city_id"))
# define color palette for I1 levels
pal_value <- colorNumeric(palette = "Greens",
domain = municipalities_I1_geo$value,
na.color = "transparent",
revers = FALSE)
# define color palette for S1 levels
pal_score <- colorFactor(palette = c("#145A32","#2ECC71","#F4D03F","#E67E22","#C0392B"),
levels = c("0","1","2","3","4"),
na.color = "transparent",
revers = TRUE)
# define labels
labels_I1 <- sprintf("<strong>%s</strong><br/>%s: %s %s<br/>%s: %s",
municipalities_I1_geo$shapeName.1,
"Proportion of natural areas",
round(municipalities_I1_geo$value, 2), "",
"Score",municipalities_I1_geo$score) %>%
lapply(htmltools::HTML)
# plot map
leaflet(height = 500, width = "100%") %>%
addTiles() %>%
addProviderTiles("OpenStreetMap.France", group = "OSM") %>%
addPolygons(data = municipalities_I1_geo,
group = "Porportion of natural areas - value",
fillColor = ~pal_value(value),
weight = 1,
opacity = 1,
color = "grey",
fillOpacity = 0.7,
label = labels_I1,
highlightOptions = highlightOptions(color = "black", weight = 2,
bringToFront = FALSE),
labelOptions = labelOptions(
style = list("font-weight" = "normal", padding = "3px 6px"),
textsize = "15px",
direction = "auto")) %>%
addLegend(pal = pal_value,
values = municipalities_I1_geo$value,
opacity = 0.9,
title = "% natural areas (2020)",
position = "topright",
labFormat = labelFormat(suffix = "")) %>%
# I1 score layer
addPolygons(data = municipalities_I1_geo,
group = "Porportion of natural areas - score",
fillColor = ~pal_score(score),
weight = 1,
opacity = 1,
color = "grey",
fillOpacity = 1,
label = labels_I1,
highlightOptions = highlightOptions(color = "black", weight = 2,
bringToFront = FALSE),
labelOptions = labelOptions(
style = list("font-weight" = "normal", padding = "3px 6px"),
textsize = "15px",
direction = "auto")) %>%
# I1 score legend
addLegend(colors = c("#145A32","#2ECC71","#F4D03F","#E67E22","#C0392B"),
labels = c("4 (> 20.0%)",
"3 (14.0% – 20.0%)",
"2 (7.0% – 13.9%)",
"1 (0% – 6.9%)",
"0 (< 1.0%)"),
opacity = 1,
title = "Natural areas scores (2020)",
position = "bottomright",
labFormat = labelFormat(suffix = "")) %>%
# Layers control
addLayersControl(
baseGroups = c("Porportion of natural areas - value","Porportion of natural areas - score"),
options = layersControlOptions(collapsed = FALSE)
)
```

```{r I1-chart, warning=FALSE, message=FALSE, echo = FALSE, eval = TRUE}
# plot chart
# prepare chart colors
value_vector = municipalities_I1_geo %>%
drop_na(score) %>%
arrange(score) %>%
pull(score) %>%
as.numeric()
color_vector = pal_score(value_vector)
# plot chart
municipalities_I1_geo %>%
arrange(desc(value)) %>%
plot_ly(height = 500, width = 900) %>%
add_trace(x = ~factor(shapeName.1),
y = ~value,
marker = list(color = color_vector),
type = "bar",
orientation = "v") %>%
layout(title = "Percent of natural areas (2020)",
xaxis = list(title = '', categoryorder = "array",categoryarray =
~value),
yaxis = list(title = ''))
```

Large diffs are not rendered by default.

Loading

0 comments on commit 64c0364

Please sign in to comment.