-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #141 from wri/dev
generate metadata file #140
- Loading branch information
Showing
2 changed files
with
285 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,219 @@ | ||
library(jsonlite) | ||
|
||
|
||
|
||
urbanshift_metadata <-list(list(filename = "dataset 1", | ||
description="This a description", | ||
title = "This is a title", | ||
tags=c("tag_1","tag_2","tag_3")), | ||
list(filename = "dataset 2", | ||
description="This a description", | ||
title = "This is a title", | ||
tags=c("tag_1","tag_2")) | ||
) | ||
|
||
|
||
|
||
urbanshift_metadata_json =jsonlite::toJSON(urbanshift_metadata,pretty=TRUE,auto_unbox=TRUE) | ||
|
||
write(urbanshift_metadata_json, "./data/urbanshift_metadata_json") | ||
|
||
######################### | ||
# ESA world cover | ||
######################### | ||
|
||
city_name = "CRI-San_Jose" | ||
|
||
data_url = paste("https://cities-urbanshift.s3.eu-west-3.amazonaws.com/data/land_use/esa_world_cover/world_cover_", | ||
city_name, | ||
".tif", | ||
sep = "") | ||
|
||
data = raster(data_url) | ||
|
||
dataset_name = paste("ESA World cover land cover extract for", city_name, sep = " ") | ||
description = "The European Space Agency (ESA) WorldCover 10 m 2020 product provides a global land cover map for 2020 at 10 m resolution based on Sentinel-1 and Sentinel-2 data. The WorldCover product comes with 11 land cover classes, aligned with UN-FAO’s Land Cover Classification System, and has been generated in the framework of the ESA WorldCover project. The World Cover product comes with 11 land cover classes: Tree cover, Shrubland, Grassland, Cropland, Built-up, Bare / sparse vegetation, Snow and ice, Open water, Herbaceous wetland, Mangroves, Moss and lichen." | ||
tags = c(city_name, | ||
"Biodiversity", | ||
"Land cover", | ||
"Geography:America:Costa_Rica") | ||
year = 2020 | ||
spatial_resolution = "10m" | ||
temporal_resolution = "yearly" | ||
spatial_extent = "Global" | ||
temporal_extent = "2020" | ||
extent = list(list(extent(data)[1], extent(data)[3]),list(extent(data)[2], extent(data)[4])) | ||
format = "raster" | ||
source = "https://esa-worldcover.org/en" | ||
provider = "European Space Agency (ESA)" | ||
|
||
|
||
metadata_esa_world_cover = list(title = dataset_name, | ||
description = description, | ||
tags = tags, | ||
year = year, | ||
spatial_resolution = spatial_resolution, | ||
temporal_resolution = temporal_resolution, | ||
spatial_extent = spatial_extent, | ||
temporal_extent = temporal_extent, | ||
extent = extent, | ||
format = format, | ||
source = source, | ||
provider = provider, | ||
url = data_url) | ||
|
||
metadata_esa_world_cover_json =jsonlite::toJSON(metadata_esa_world_cover, | ||
pretty=TRUE, | ||
auto_unbox=TRUE) | ||
|
||
|
||
######################### | ||
# Global Biodiversity Information Facility | ||
######################### | ||
|
||
data_url = paste("https://cities-urbanshift.s3.eu-west-3.amazonaws.com/data/biodiversity/GBIF-", | ||
city_name, | ||
".geojson", | ||
sep = "") | ||
|
||
dataset_name = paste("Global Biodiversity Information Facility for", city_name, sep = " ") | ||
description = "The Global Biodiversity Information Facility (GBIF) is an international network and data infrastructure funded by the world’s governments and aimed at providing anyone, anywhere, open access to data about all types of life on Earth.." | ||
tags = c(city_name, | ||
"Biodiversity", | ||
"Geography:America:Costa_Rica") | ||
year = 2020 | ||
format = "geojson" | ||
source = "https://www.gbif.org/en/" | ||
provider = "Global Biodiversity Information Facility" | ||
|
||
metadata_gbif = list(title = dataset_name, | ||
description = description, | ||
tags = tags, | ||
year = year, | ||
format = format, | ||
source = source, | ||
provider = provider, | ||
url = data_url) | ||
|
||
metadata_gbif_json =jsonlite::toJSON(metadata_gbif, | ||
pretty=TRUE, | ||
auto_unbox=TRUE) | ||
|
||
|
||
######################### | ||
# Amenity | ||
######################### | ||
|
||
data_url = paste("https://cities-urbanshift.s3.eu-west-3.amazonaws.com/data/biodiversity/amenity_", | ||
city_name, | ||
".geojson", | ||
sep = "") | ||
|
||
dataset_name = paste("Urban amenities extract for", city_name, sep = " ") | ||
description = "OpenStreetMap (OSM) provides a free access to the different geographical features mapped by OSM contributors. Amenity data represents physical features on the ground with their corresponding geographic attributes." | ||
tags = c(city_name, | ||
"Amenity", | ||
"Geography:America:Costa_Rica") | ||
year = 2022 | ||
format = "geojson" | ||
source = "https://wiki.openstreetmap.org/wiki/Elements" | ||
provider = "OpenStreetMap" | ||
|
||
metadata_amenity = list(title = dataset_name, | ||
description = description, | ||
tags = tags, | ||
year = year, | ||
format = format, | ||
source = source, | ||
provider = provider, | ||
url = data_url) | ||
|
||
metadata_amenity_json =jsonlite::toJSON(metadata_amenity, | ||
pretty=TRUE, | ||
auto_unbox=TRUE) | ||
|
||
######################### | ||
# Boundaries | ||
######################### | ||
|
||
data_url = paste("https://cities-urbanshift.s3.eu-west-3.amazonaws.com/data/biodiversity/", | ||
city_name, | ||
"-boundary.geojson", | ||
sep = "") | ||
|
||
dataset_name = paste("Administrative boundaries extract for", city_name, sep = " ") | ||
description = "OpenStreetMap (OSM) provides a free access to the different geographical features mapped by OSM contributors. Amenity data represents physical features on the ground with their corresponding geographic attributes." | ||
tags = c(city_name, | ||
"Amenity", | ||
"Geography:America:Costa_Rica") | ||
year = 2022 | ||
format = "geojson" | ||
source = "https://wiki.openstreetmap.org/wiki/Elements" | ||
provider = "OpenStreetMap" | ||
|
||
metadata_amenity = list(title = dataset_name, | ||
description = description, | ||
tags = tags, | ||
year = year, | ||
format = format, | ||
source = source, | ||
provider = provider, | ||
url = data_url) | ||
|
||
metadata_amenity_json =jsonlite::toJSON(metadata_amenity, | ||
pretty=TRUE, | ||
auto_unbox=TRUE) | ||
|
||
######################### | ||
# Urban Land Use | ||
######################### | ||
|
||
|
||
data_url = paste("https://cities-urbanshift.s3.eu-west-3.amazonaws.com/data/land_use/urban_land_use/", | ||
city_name, | ||
"-urbanlanduse2020.tif", | ||
sep = "") | ||
|
||
data = raster(data_url) | ||
|
||
dataset_name = paste("Urban Land Use extract for", city_name, sep = " ") | ||
description = "The ULU data provides land use and land cover information of urban areas based on the application of supervised classification model trained on high resolution Sentinel-2 stallite imagery data. Urban land classes include: open space,non residential area,residential atomistic,residential informal,residential forma,housing project, and roads." | ||
tags = c(city_name, | ||
"Land Use", | ||
"Geography:America:Costa_Rica") | ||
year = 2020 | ||
extent = list(list(extent(data)[1], extent(data)[3]),list(extent(data)[2], extent(data)[4])) | ||
format = "raster" | ||
source = "https://www.wri.org/research/spatial-characterization-urban-land-use-through-machine-learning" | ||
provider = "World Resources Institute (WRI)" | ||
|
||
|
||
metadata_ulu = list(title = dataset_name, | ||
description = description, | ||
tags = tags, | ||
year = year, | ||
extent = extent, | ||
format = format, | ||
source = source, | ||
provider = provider, | ||
url = data_url) | ||
|
||
metadata_ulu_json =jsonlite::toJSON(metadata_ulu, | ||
pretty=TRUE, | ||
auto_unbox=TRUE) | ||
|
||
|
||
######################### | ||
# Store output | ||
######################### | ||
|
||
metadata = list(metadata_esa_world_cover, | ||
metadata_gbif, | ||
metadata_amenity, | ||
metadata_ulu) | ||
|
||
metadata_json =jsonlite::toJSON(metadata, | ||
pretty=TRUE, | ||
auto_unbox=TRUE) | ||
|
||
write(metadata_json, "./data/metadata.json") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,66 @@ | ||
[ | ||
{ | ||
"title": "ESA World cover land cover extract for CRI-San_Jose", | ||
"description": "The European Space Agency (ESA) WorldCover 10 m 2020 product provides a global land cover map for 2020 at 10 m resolution based on Sentinel-1 and Sentinel-2 data. The WorldCover product comes with 11 land cover classes, aligned with UN-FAO’s Land Cover Classification System, and has been generated in the framework of the ESA WorldCover project. The World Cover product comes with 11 land cover classes: Tree cover, Shrubland, Grassland, Cropland, Built-up, Bare / sparse vegetation, Snow and ice, Open water, Herbaceous wetland, Mangroves, Moss and lichen.", | ||
"tags": ["CRI-San_Jose", "Biodiversity", "Land cover", "Geography:America:Costa_Rica"], | ||
"year": 2020, | ||
"spatial_resolution": "10m", | ||
"temporal_resolution": "yearly", | ||
"spatial_extent": "Global", | ||
"temporal_extent": "2020", | ||
"extent": [ | ||
[ | ||
-84.47, | ||
9.5508 | ||
], | ||
[ | ||
-83.6458, | ||
10.4142 | ||
] | ||
], | ||
"format": "raster", | ||
"source": "https://esa-worldcover.org/en", | ||
"provider": "European Space Agency (ESA)", | ||
"url": "https://cities-urbanshift.s3.eu-west-3.amazonaws.com/data/land_use/esa_world_cover/world_cover_CRI-San_Jose.tif" | ||
}, | ||
{ | ||
"title": "Global Biodiversity Information Facility for CRI-San_Jose", | ||
"description": "The Global Biodiversity Information Facility (GBIF) is an international network and data infrastructure funded by the world’s governments and aimed at providing anyone, anywhere, open access to data about all types of life on Earth..", | ||
"tags": ["CRI-San_Jose", "Biodiversity", "Geography:America:Costa_Rica"], | ||
"year": 2020, | ||
"format": "geojson", | ||
"source": "https://www.gbif.org/en/", | ||
"provider": "Global Biodiversity Information Facility", | ||
"url": "https://cities-urbanshift.s3.eu-west-3.amazonaws.com/data/biodiversity/GBIF-CRI-San_Jose.geojson" | ||
}, | ||
{ | ||
"title": "Urban amenities extract for CRI-San_Jose", | ||
"description": "OpenStreetMap (OSM) provides a free access to the different geographical features mapped by OSM contributors. Amenity data represents physical features on the ground with their corresponding geographic attributes.", | ||
"tags": ["CRI-San_Jose", "Amenity", "Geography:America:Costa_Rica"], | ||
"year": 2022, | ||
"format": "geojson", | ||
"source": "https://wiki.openstreetmap.org/wiki/Elements", | ||
"provider": "OpenStreetMap", | ||
"url": "https://cities-urbanshift.s3.eu-west-3.amazonaws.com/data/biodiversity/amenity_CRI-San_Jose.geojson" | ||
}, | ||
{ | ||
"title": "Urban Land Use extract for CRI-San_Jose", | ||
"description": "The ULU data provides land use and land cover information of urban areas based on the application of supervised classification model trained on high resolution Sentinel-2 stallite imagery data. Urban land classes include: open space,non residential area,residential atomistic,residential informal,residential forma,housing project, and roads.", | ||
"tags": ["CRI-San_Jose", "Land Use", "Geography:America:Costa_Rica"], | ||
"year": 2020, | ||
"extent": [ | ||
[ | ||
-84.4689, | ||
9.5511 | ||
], | ||
[ | ||
-83.6465, | ||
10.4137 | ||
] | ||
], | ||
"format": "raster", | ||
"source": "https://www.wri.org/research/spatial-characterization-urban-land-use-through-machine-learning", | ||
"provider": "World Resources Institute (WRI)", | ||
"url": "https://cities-urbanshift.s3.eu-west-3.amazonaws.com/data/land_use/urban_land_use/CRI-San_Jose-urbanlanduse2020.tif" | ||
} | ||
] |