For something in between a pytorch and a karpathy/micrograd
This may not be the best deep learning framework, but it is a deep learning framework.
The Tensor class is a wrapper around a numpy array, except it does Tensor things.
tinygrad is also a city in Russia.
pip3 install git+https://github.com/geohot/tinygrad.git --upgrade
from tinygrad.tensor import Tensor
x = Tensor.eye(3)
y = Tensor([[2.0,0,-2.0]])
z = y.matmul(x).sum()
z.backward()
print(x.grad) # dz/dx
print(y.grad) # dz/dy
import torch
x = torch.eye(3, requires_grad=True)
y = torch.tensor([[2.0,0,-2.0]], requires_grad=True)
z = y.matmul(x).sum()
z.backward()
print(x.grad) # dz/dx
print(y.grad) # dz/dy
It turns out, a decent autograd tensor library is 90% of what you need for neural networks. Add an optimizer (SGD, RMSprop, and Adam implemented) from tinygrad.optim, write some boilerplate minibatching code, and you have all you need.
from tinygrad.tensor import Tensor
import tinygrad.optim as optim
class TinyBobNet:
def __init__(self):
self.l1 = Tensor.uniform(784, 128)
self.l2 = Tensor.uniform(128, 10)
def forward(self, x):
return x.dot(self.l1).relu().dot(self.l2).logsoftmax()
model = TinyBobNet()
optim = optim.SGD([model.l1, model.l2], lr=0.001)
# ... and complete like pytorch, with (x,y) data
out = model.forward(x)
loss = out.mul(y).mean()
optim.zero_grad()
loss.backward()
optim.step()
tinygrad supports GPUs through PyOpenCL.
from tinygrad.tensor import Tensor
(Tensor.ones(4,4).gpu() + Tensor.ones(4,4).gpu()).cpu()
If all you want to do is ReLU, you are in luck! You can do very fast ReLU (at least 30 MEGAReLUs/sec confirmed)
Requires your Python to be signed with ane/lib/sign_python.sh
to add the com.apple.ane.iokit-user-access
entitlement, which also requires amfi_get_out_of_my_way=0x1
in your boot-args
. Build the library with ane/lib/build.sh
from tinygrad.tensor import Tensor
a = Tensor([-2,-1,0,1,2]).ane()
b = a.relu()
print(b.cpu())
Warning: do not rely on the ANE port. It segfaults sometimes. So if you were doing something important with tinygrad and wanted to use the ANE, you might have a bad time.
You need to support 14 basic ops:
Add, Sub, Mul, Pow, Sum, Dot
Pad2D, Reshape
Relu, Sigmoid, LogSoftmax
Conv2D, MaxPool2D, AvgPool2D
Despite being tiny, tinygrad supports the full EfficientNet. Pass in a picture to discover what it is.
ipython3 examples/efficientnet.py https://upload.wikimedia.org/wikipedia/commons/4/41/Chicken.jpg
Or, if you have a webcam and cv2 installed
ipython3 examples/efficientnet.py webcam
PROTIP: Set "GPU=1" environment variable if you want this to go faster.
PROPROTIP: Set "DEBUG=1" environment variable if you want to see why it's slow.
See examples/mnist_gan.py
tinygrad will always be below 1000 lines. If it isn't, we will revert commits until tinygrad becomes smaller.
python3 -m pytest
- Train an EfficientNet on ImageNet
- Add a language model. BERT?
- Add a detection model. EfficientDet?
- Reduce code
- Increase speed
- Add features