Skip to content

基于Pytorch实现优秀的自然图像分割框架!(包括FCN、U-Net和Deeplab)

Notifications You must be signed in to change notification settings

xlnn/segmentation-learning-experiment-pytorch

 
 

Repository files navigation

语义分割学习实验-基于VOC数据集

usage:

  1. 下载VOC数据集,将JPEGImages SegmentationClass两个文件夹放入到data文件夹下。
  2. 终端切换到目标目录,运行python train.py -h查看训练
(torch) qust116-jq@qustx-X299-WU8:~/语义分割$ python train.py -h
usage: train.py [-h] [-m {Unet,FCN,Deeplab}] [-g GPU]

choose the model

optional arguments:
  -h, --help            show this help message and exit
  -m {Unet,FCN,Deeplab}, --model {Unet,FCN,Deeplab}
                        输入模型名字
  -g GPU, --gpu GPU     输入所需GPU

选择模型和GPU编号进行训练,例如运行python train.py -m Unet -g 0

  1. 预测需要手动修改predict.py中的模型

About

基于Pytorch实现优秀的自然图像分割框架!(包括FCN、U-Net和Deeplab)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 88.6%
  • Jupyter Notebook 11.4%