-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
xuewen
committed
Nov 19, 2020
1 parent
b541834
commit 3254aa2
Showing
34 changed files
with
4,394 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,60 @@ | ||
# Keypoint Detection by HRNet | ||
|
||
`original code` | ||
clone from https://github.com/leoxiaobin/deep-high-resolution-net.pytorch | ||
|
||
参考https://github.com/lxy5513/hrnet | ||
|
||
|
||
|
||
## Demo | ||
|
||
``` | ||
python tools/human_keypoint_inference.py | ||
``` | ||
|
||
|
||
|
||
## Model Download | ||
+ 下载pose_hrnet_*.pth模型文件,保存到models/pytorch/pose_coco文件夹中 | ||
+ address: https://drive.google.com/drive/folders/1nzM_OBV9LbAEA7HClC0chEyf_7ECDXYA) | ||
|
||
+ 下载yolov3目标检测模型文件,保存到/lib/detector/yolo文件夹中 | ||
+ yolov3 model download: wget https://pjreddie.com/media/files/yolov3.weights | ||
|
||
|
||
|
||
## Main Steps | ||
|
||
1. 人体目标检测: | ||
|
||
```python | ||
bboxs, scores = yolo_det(args.img_input, human_model, confidence=0.5) # bboxes (N, 4) [x0, y0, x1, y1] | ||
``` | ||
|
||
|
||
|
||
2. 根据上一步得到的bbox提取单个的人体图像: | ||
|
||
``` | ||
inputs, origin_img, center, scale = preprocess(args.img_input, bboxs, scores, cfg) | ||
``` | ||
|
||
|
||
|
||
3. 关键点检测,得到每个关键点的heatmap: | ||
|
||
``` | ||
output = model(inputs) | ||
``` | ||
|
||
|
||
|
||
4. heatmap后处理,得到关键点坐标: | ||
|
||
``` | ||
preds, maxvals = get_final_preds(cfg, output.clone().cpu().numpy(), np.asarray(center), np.asarray(scale)) | ||
``` | ||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
## use for image human bounding box obtain | ||
|
||
`original code` | ||
clone from https://github.com/lxy5513/hrnet | ||
|
||
https://github.com/lxy5513/hrnet/tree/master/lib/detector/yolo |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,115 @@ | ||
from __future__ import division | ||
|
||
import torch | ||
import random | ||
|
||
import numpy as np | ||
import cv2 | ||
|
||
def confidence_filter(result, confidence): | ||
conf_mask = (result[:,:,4] > confidence).float().unsqueeze(2) | ||
result = result*conf_mask | ||
|
||
return result | ||
|
||
def confidence_filter_cls(result, confidence): | ||
max_scores = torch.max(result[:,:,5:25], 2)[0] | ||
res = torch.cat((result, max_scores),2) | ||
print(res.shape) | ||
|
||
|
||
cond_1 = (res[:,:,4] > confidence).float() | ||
cond_2 = (res[:,:,25] > 0.995).float() | ||
|
||
conf = cond_1 + cond_2 | ||
conf = torch.clamp(conf, 0.0, 1.0) | ||
conf = conf.unsqueeze(2) | ||
result = result*conf | ||
return result | ||
|
||
|
||
|
||
def get_abs_coord(box): | ||
box[2], box[3] = abs(box[2]), abs(box[3]) | ||
x1 = (box[0] - box[2]/2) - 1 | ||
y1 = (box[1] - box[3]/2) - 1 | ||
x2 = (box[0] + box[2]/2) - 1 | ||
y2 = (box[1] + box[3]/2) - 1 | ||
return x1, y1, x2, y2 | ||
|
||
|
||
|
||
def sanity_fix(box): | ||
if (box[0] > box[2]): | ||
box[0], box[2] = box[2], box[0] | ||
|
||
if (box[1] > box[3]): | ||
box[1], box[3] = box[3], box[1] | ||
|
||
return box | ||
|
||
def bbox_iou(box1, box2): | ||
""" | ||
Returns the IoU of two bounding boxes | ||
""" | ||
#Get the coordinates of bounding boxes | ||
b1_x1, b1_y1, b1_x2, b1_y2 = box1[:,0], box1[:,1], box1[:,2], box1[:,3] | ||
b2_x1, b2_y1, b2_x2, b2_y2 = box2[:,0], box2[:,1], box2[:,2], box2[:,3] | ||
|
||
#get the corrdinates of the intersection rectangle | ||
inter_rect_x1 = torch.max(b1_x1, b2_x1) | ||
inter_rect_y1 = torch.max(b1_y1, b2_y1) | ||
inter_rect_x2 = torch.min(b1_x2, b2_x2) | ||
inter_rect_y2 = torch.min(b1_y2, b2_y2) | ||
|
||
#Intersection area | ||
if torch.cuda.is_available(): | ||
inter_area = torch.max(inter_rect_x2 - inter_rect_x1 + 1,torch.zeros(inter_rect_x2.shape).cuda())*torch.max(inter_rect_y2 - inter_rect_y1 + 1, torch.zeros(inter_rect_x2.shape).cuda()) | ||
else: | ||
inter_area = torch.max(inter_rect_x2 - inter_rect_x1 + 1,torch.zeros(inter_rect_x2.shape))*torch.max(inter_rect_y2 - inter_rect_y1 + 1, torch.zeros(inter_rect_x2.shape)) | ||
|
||
#Union Area | ||
b1_area = (b1_x2 - b1_x1 + 1)*(b1_y2 - b1_y1 + 1) | ||
b2_area = (b2_x2 - b2_x1 + 1)*(b2_y2 - b2_y1 + 1) | ||
|
||
iou = inter_area / (b1_area + b2_area - inter_area) | ||
|
||
return iou | ||
|
||
|
||
def pred_corner_coord(prediction): | ||
#Get indices of non-zero confidence bboxes | ||
ind_nz = torch.nonzero(prediction[:,:,4]).transpose(0,1).contiguous() | ||
|
||
box = prediction[ind_nz[0], ind_nz[1]] | ||
|
||
|
||
box_a = box.new(box.shape) | ||
box_a[:,0] = (box[:,0] - box[:,2]/2) | ||
box_a[:,1] = (box[:,1] - box[:,3]/2) | ||
box_a[:,2] = (box[:,0] + box[:,2]/2) | ||
box_a[:,3] = (box[:,1] + box[:,3]/2) | ||
box[:,:4] = box_a[:,:4] | ||
|
||
prediction[ind_nz[0], ind_nz[1]] = box | ||
|
||
return prediction | ||
|
||
|
||
|
||
|
||
def write(x, batches, results, colors, classes): | ||
c1 = tuple(x[1:3].int()) | ||
c2 = tuple(x[3:5].int()) | ||
img = results[int(x[0])] | ||
cls = int(x[-1]) | ||
label = "{0}".format(classes[cls]) | ||
color = random.choice(colors) | ||
cv2.rectangle(img, c1, c2,color, 1) | ||
t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 1 , 1)[0] | ||
c2 = c1[0] + t_size[0] + 3, c1[1] + t_size[1] + 4 | ||
cv2.rectangle(img, c1, c2,color, -1) | ||
cv2.putText(img, label, (c1[0], c1[1] + t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 1, [225,255,255], 1); | ||
return img |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,168 @@ | ||
from __future__ import division | ||
import time | ||
import torch | ||
import torch.nn as nn | ||
from torch.autograd import Variable | ||
import numpy as np | ||
import cv2 | ||
from util import * | ||
from darknet import Darknet | ||
from preprocess import prep_image, inp_to_image | ||
import pandas as pd | ||
import random | ||
import argparse | ||
import pickle as pkl | ||
|
||
def get_test_input(input_dim, CUDA): | ||
img = cv2.imread("imgs/messi.jpg") | ||
img = cv2.resize(img, (input_dim, input_dim)) | ||
img_ = img[:,:,::-1].transpose((2,0,1)) | ||
img_ = img_[np.newaxis,:,:,:]/255.0 | ||
img_ = torch.from_numpy(img_).float() | ||
img_ = Variable(img_) | ||
|
||
if CUDA: | ||
img_ = img_.cuda() | ||
|
||
return img_ | ||
|
||
def prep_image(img, inp_dim): | ||
""" | ||
Prepare image for inputting to the neural network. | ||
Returns a Variable | ||
""" | ||
|
||
orig_im = img | ||
dim = orig_im.shape[1], orig_im.shape[0] | ||
img = cv2.resize(orig_im, (inp_dim, inp_dim)) | ||
img_ = img[:,:,::-1].transpose((2,0,1)).copy() | ||
img_ = torch.from_numpy(img_).float().div(255.0).unsqueeze(0) | ||
return img_, orig_im, dim | ||
|
||
def write(x, img): | ||
c1 = tuple(x[1:3].int()) | ||
c2 = tuple(x[3:5].int()) | ||
cls = int(x[-1]) | ||
label = "{0}".format(classes[cls]) | ||
color = random.choice(colors) | ||
cv2.rectangle(img, c1, c2,color, 1) | ||
t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 1 , 1)[0] | ||
c2 = c1[0] + t_size[0] + 3, c1[1] + t_size[1] + 4 | ||
cv2.rectangle(img, c1, c2,color, -1) | ||
cv2.putText(img, label, (c1[0], c1[1] + t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 1, [225,255,255], 1); | ||
return img | ||
|
||
def arg_parse(): | ||
""" | ||
Parse arguements to the detect module | ||
""" | ||
|
||
|
||
parser = argparse.ArgumentParser(description='YOLO v3 Cam Demo') | ||
parser.add_argument("--confidence", dest = "confidence", help = "Object Confidence to filter predictions", default = 0.25) | ||
parser.add_argument("--nms_thresh", dest = "nms_thresh", help = "NMS Threshhold", default = 0.4) | ||
parser.add_argument("--reso", dest = 'reso', help = | ||
"Input resolution of the network. Increase to increase accuracy. Decrease to increase speed", | ||
default = "160", type = str) | ||
return parser.parse_args() | ||
|
||
|
||
|
||
if __name__ == '__main__': | ||
cfgfile = "cfg/yolov3.cfg" | ||
weightsfile = "yolov3.weights" | ||
num_classes = 80 | ||
|
||
args = arg_parse() | ||
confidence = float(args.confidence) | ||
nms_thesh = float(args.nms_thresh) | ||
start = 0 | ||
CUDA = torch.cuda.is_available() | ||
|
||
|
||
|
||
|
||
num_classes = 80 | ||
bbox_attrs = 5 + num_classes | ||
|
||
model = Darknet(cfgfile) | ||
model.load_weights(weightsfile) | ||
|
||
model.net_info["height"] = args.reso | ||
inp_dim = int(model.net_info["height"]) | ||
|
||
assert inp_dim % 32 == 0 | ||
assert inp_dim > 32 | ||
|
||
if CUDA: | ||
model.cuda() | ||
|
||
model.eval() | ||
|
||
videofile = 'video.avi' | ||
|
||
cap = cv2.VideoCapture(0) | ||
|
||
assert cap.isOpened(), 'Cannot capture source' | ||
|
||
frames = 0 | ||
start = time.time() | ||
while cap.isOpened(): | ||
|
||
ret, frame = cap.read() | ||
if ret: | ||
|
||
img, orig_im, dim = prep_image(frame, inp_dim) | ||
|
||
# im_dim = torch.FloatTensor(dim).repeat(1,2) | ||
|
||
|
||
if CUDA: | ||
im_dim = im_dim.cuda() | ||
img = img.cuda() | ||
|
||
|
||
output = model(Variable(img), CUDA) | ||
output = write_results(output, confidence, num_classes, nms = True, nms_conf = nms_thesh) | ||
|
||
if type(output) == int: | ||
frames += 1 | ||
print("FPS of the video is {:5.2f}".format( frames / (time.time() - start))) | ||
cv2.imshow("frame", orig_im) | ||
key = cv2.waitKey(1) | ||
if key & 0xFF == ord('q'): | ||
break | ||
continue | ||
|
||
|
||
|
||
output[:,1:5] = torch.clamp(output[:,1:5], 0.0, float(inp_dim))/inp_dim | ||
|
||
# im_dim = im_dim.repeat(output.size(0), 1) | ||
output[:,[1,3]] *= frame.shape[1] | ||
output[:,[2,4]] *= frame.shape[0] | ||
|
||
|
||
classes = load_classes('data/coco.names') | ||
colors = pkl.load(open("pallete", "rb")) | ||
|
||
list(map(lambda x: write(x, orig_im), output)) | ||
|
||
|
||
cv2.imshow("frame", orig_im) | ||
key = cv2.waitKey(1) | ||
if key & 0xFF == ord('q'): | ||
break | ||
frames += 1 | ||
print("FPS of the video is {:5.2f}".format( frames / (time.time() - start))) | ||
|
||
|
||
else: | ||
break | ||
|
||
|
||
|
||
|
||
|
Oops, something went wrong.