Skip to content

FeatureDock is a protein-ligand docking software guided by physicochemical feature-based local environment learning using Transformer

License

Notifications You must be signed in to change notification settings

xuhuihuang/featuredock

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Project Aim

The hypothesis is that the protein-ligand interaction map depends only on local environments instead of the whole protein. This model predicts the geometric preference of ligand given a protein pocket. The trained neural network can predict probability maps of novel query structures. Such s probability map can be used to pick potential binding ligands from existing small compound libraries based on a custom scoring function encoding the probabilities.

pipeline

Setup Environment

conda create -n featdock python=3.8
conda activate featdock
conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia # pytorch 2.0
conda install "numpy>=1.23.5"
conda install pandas matplotlib pygraphviz
conda install -c conda-forge scipy=1.8.0
pip install scikit-learn==1.0.2
conda install -c salilab dssp # dssp 3.0.0
conda install -c conda-forge pymol-open-source
pip install rdkit==2022.9.5
pip install tqdm

Unzip utils/feature-3.1.0.zip, and add executable mode to utils/feature-3.1.0/src/feature.

In case that dssp cannot be correctly installed via conda, please use the dssp binary file in src/utils.

PROJ_HOME=featuredock
export PATH=${PROJ_HOME}/src/utils:${PATH}
dssp --version

Predict

Run a quick prediction using one trained model:

PROJ_HOME=featuredock
MODELREPO=${PROJ_HOME}/results/vit_20
MODELTYPE=transformer
NBLOCKS=20
TASK=HeavyAtomsite
SEED=0
MODELNAME=${TASK}_${MODELTYPE}_${NBLOCKS}_seed${SEED}
PRED_DIR=${PROJ_HOME}/examples
name=1b38

python ${SCRIPT_HOME}/application/predict_main.py \
    --configfile=${MODELREPO}/${MODELNAME}/${MODELNAME}_config.torch \
    --paramfile=${MODELREPO}/${MODELNAME}/${MODELNAME}_best_checkpoint_params.torch \
    --datafile=${PRED_DIR}/aligned_merged_pocket/${name}.property.pvar \
    --outfile=${PRED_DIR}/${name}_seed${SEED}.predictions.pkl \
    --batchsize=10000

To visualize the predictions, one way is to output xyz files that contains grid points above certain probabilities:

python ${SCRIPT_HOME}/application/plot_prediction.py \
    --voxelfile=${PRED_DIR}/aligned_merged_pocket/${name}.voxels.pkl \
    --probfile=${PRED_DIR}/${name}_seed${SEED}.predictions.pkl \
    --outdir=${PRED_DIR}/${name}_xyz \
    --cutoffs 0.8 0.9 0.95

Another way is to plot the colored predicted probability map in PyMol. Run the following command in PyMol terminal:

# Run script: src/application/plot_probability_map.py
plot_probability(probfile, voxelfile, cutoff=0.8, colormap='Blues', relative=True, is_rank=False, plot_every=1)

Note: How to install matplotlib to the PyMol environment:

conda install -p ${PYMOL_PATH} matplotlib

Complete workflow

  1. Prerequisites: commands/step1_download_prerequisites.sh
  2. Dataset curation: commands/step2_1_curate_dataset_commands.sh, commnds/step2_2_split_dataset_for_general_model.sh
  3. Training: commands/step3_train_general_model.sh
  4. Evaluation: commands/step4_evaluate_commands.sh
  5. Prediction: commands/step5_predict_commands.sh
  6. An example of applying FeatureDock to virtual screen the inactivated CDK2: examples/step6_apply_prediction.sh.

Curate Dataset

A few comments and explanations for step 1 and step2.

Prerequisite Data and Packages

  1. Download and unzip PDBbind_v2020_refined.tar.gz.

  2. Download and install GNU Parallel. This is used to parallel commands in dataset curation.

sudo apt-get install parallel
parallel --version

Dataset explanations

The training dataset is curated by (1) discretizing the ligand-binding pocket to grid points, (2) featurizing each grid point using FEATURE vectors, and (3) labeling each grid point using ligand properties in the cocrystal structure.

  1. HETATM such as ions in protein structures will be removed.
  2. Secondary structures of apo proteins will be calculated for FEATURE vector calculation.
  3. Space around the ligand will be discretized to grid points
  4. Landmarks based on ligand or protein-ligand interactions will be created.
  5. Grid points will be labeled based on landmarks.

Commands can be found in commands/step2_1curate_dataset_commands.sh. The size of FEATURE property pickle file is 10~15MB and there are ~4500 of such files. The program will generate some intermediate output files to help visualise the dataset when flagged in the Python scripts. Therefore, the curated dataset needs at least 100GB disk space.

How to Cite

The preprint is available as FeatureDock: Protein-Ligand Docking Guided by Physicochemical Feature-Based Local Environment Learning using Transformer.

References

  1. Halperin, I., Glazer, D. S., Wu, S., & Altman, R. B. The FEATURE framework for protein function annotation: modeling new functions, improving performance, and extending to novel applications. In BMC Genomics (Vol. 9, Issue S2). https://doi.org/10.1186/1471-2164-9-s2-s2
  2. Lam, J.H., Li, Y., Zhu, L. et al. A deep learning framework to predict binding preference of RNA constituents on protein surface. Nat Commun 10, 4941 (2019). https://doi.org/10.1038/s41467-019-12920-0
  3. Bouysset, C., Fiorucci, S. ProLIF: a library to encode molecular interactions as fingerprints. J Cheminform 13, 72 (2021). https://doi.org/10.1186/s13321-021-00548-6

License

MIT License

About

FeatureDock is a protein-ligand docking software guided by physicochemical feature-based local environment learning using Transformer

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published