Skip to content

Mind Your Format: Towards Consistent Evaluation of In-Context Learning Improvements

License

Notifications You must be signed in to change notification settings

yandex-research/mind-your-format

Repository files navigation

Mind Your Format: Towards Consistent Evaluation of In-Context Learning Improvements

arXiv

In our work, we explore the impact of prompt template choice on the In-Context Learning performance of Large Language Models in various prediction and demonstration selection methods. As a first step towards mitigating this issue we propose Template Ensembles.

This repository contains the official code for our paper and the results of all our experiments.

Example performance of two templates for the same set of demonstrations

Installation

Create a new Conda environment:

conda create --name templates python=3.8
conda activate templates

Install the dependencies:

pip install -r requirements.txt

Evaluation

In order to run experiments with LLaMA and LLaMA 2, you need to access weights of the corresponding model on the Hugging Face Hub model page (e.g. for LLaMA 2 7B)

Note that you may need to change --eval_batch_size depending on the model and your hardware.

You may need to use more than 1 GPU for some models. In this case, you may also want to set --device_map balanced_low_0 (see Accelerate documentation for details)

Baseline results

To get the baseline results (0-shot or few-shot with the Random selection method and the Direct prediction method), run the following command:

python selection_methods.py \
  -d [sst2/dbpedia/agnews/trec] \
  -m {model} \
  --seed 59 13 21 \
  --num_shots [0/2/4] \
  --save_dir {path_to_csv_with_results} \
  --wandb_entity {your_wandb_account} \
  --wandb_project {your_wandb_project} \
  --prediction_method direct \
  --eval_batch_size 16

Prediction methods

python selection_methods.py \
  -d [sst2/dbpedia/agnews/trec] \
  -m {model} \
  --seed 59 13 21 \
  --num_shots 2 \
  --save_dir {path_to_csv_with_results} \
  --wandb_entity {your_wandb_account} \
  --wandb_project {your_wandb_project} \
  --prediction_method [direct/channel/calibrate] \
  [--labels_loss] \
  --eval_batch_size 16

--labels_loss option is used to calculate loss only over labels' tokens. Use it for Channel and Calibrate prediction methods.

Example selection methods

python selection_methods.py \
  -d [sst2/dbpedia/agnews/trec] \
  -m {model} \
  --examples_path selected_examples/{method}/{dataset} \
  --seed 59 13 21 \
  --num_shots [2/4] \
  --save_dir {path_to_csv_with_results} \
  --wandb_entity {your_wandb_account} \
  --wandb_project {your_wandb_project} \
  --prediction_method [direct/calibrate/channel] \
  --examples_selection_method [random/implicitly_topic_models/z-ICL] \
  --eval_batch_size 16

Template transfer

In order to evaluate template transfer between different setups, you need to run experiments for the desired methods varying the --template_seed argument. See the example for different prediction methods below:

python selection_methods.py \
  -d [sst2/dbpedia/agnews/trec] \
  -m {model} \
  --seed 59 \
  --template_seed 59 13 21 \
  --num_shots 2 \
  --save_dir {path_to_csv_with_results} \
  --wandb_entity {your_wandb_account} \
  --wandb_project {your_wandb_project} \
  --prediction_method [direct/channel/calibrate] \
  [--labels_loss] \
  --eval_batch_size 16

Template ensembles

You can get results for template ensembles with the following command:

templates_ensemble.py \
  -m {model} \
  -dataset [sst2/dbpedia/agnews/trec] \
  --num_templates 5 \
  --num_shots 2 \
  --prediction_method direct \
  --eval_batch_size 16 \
  --save_dir {save_path} \
  --cache_dir {hf_cache_path} \
  --seed 13 21 59

Results analysis

We provide the results for all our experiments and the code to reproduce figures and tables from our paper in the plots_and_tables folder. In case you run your own experiments, the results will be stored locally at {save_dir}/all_runs.csv. Alternatively, you can download them from your Weights & Biases project.

Citation

If you make use of our work, please cite our paper:

@misc{voronov2024mind,
      title={Mind Your Format: Towards Consistent Evaluation of In-Context Learning Improvements}, 
      author={Anton Voronov and Lena Wolf and Max Ryabinin},
      year={2024},
      eprint={2401.06766},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

About

Mind Your Format: Towards Consistent Evaluation of In-Context Learning Improvements

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published