A minimal, lightweight client designed to simplify SDK adoption into MCP.
litemcp enables rapid and intuitive integration of various AI SDKs (e.g., LangChain, Agent SDK) into your MCP projects, emphasizing simplicity, flexibility, and minimal dependencies.
- Simplicity: Streamlined interfaces ensure easy integration.
- Flexibility: Quickly adopt diverse SDKs with minimal effort.
- Lightweight: Designed with minimal dependencies to maximize clarity and performance.
Install via pip:
pip install litemcp
litemcp
allows you to integrate tools from an MCP server into various LLM runtimes, including the OpenAI Agent SDK, LangChain, and direct OpenAI API calls.
Below are three examples showing how to use litemcp
in different contexts:
async def main():
async with MCPServerManager(sys.argv[1]) as server_manager:
mcp_server_tools = await server_manager.agent_sdk_tools()
agent = Agent(
name="assistant",
instructions="You are an AI assistant.",
tools=mcp_server_tools,
)
result = await Runner.run(agent, "List all the kubernetes clusters")
print(result.final_output)
if __name__ == "__main__":
asyncio.run(main())
async def main(config):
chat = ChatOpenAI(model="gpt-3.5-turbo-0125")
async with MCPServerManager(config) as server_manager:
# bind tools
tools: List[BaseTool] = await server_manager.langchain_tools()
chat_with_tools = chat.bind_tools(tools, tool_choice="any")
messages = [
SystemMessage(content="You're a helpful assistant"),
HumanMessage(content="List the dirs in the /Users"),
]
tool_calls = chat_with_tools.invoke(messages).tool_calls
# invoke the tool_call
tool_map = {tool.name: tool for tool in tools}
for tool_call in tool_calls:
selected_tool = tool_map[tool_call["name"].lower()]
tool_output = await selected_tool.ainvoke(tool_call["args"])
print(tool_output)
async def main(config):
client = OpenAI()
async with MCPServerManager(config) as server_manager:
schemas = await server_manager.schemas()
completion = client.chat.completions.create(
model="gpt-4o",
messages=[{"role": "user", "content": "List the dirs in the /Users"}],
tools=schemas,
)
print(completion.choices[0].message.tool_calls)
# Execute the selected tool
tool_call = completion.choices[0].message.tool_calls[0]
result = await server_manager.tool_call(
tool_call.function.name, tool_call.function.arguments
)
print(result.content[0].text)
You can add a custom validation function to control MCP tool calls. This helps prevent server tools from directly accessing your system without permission—such as integrating a human-in-the-loop step.
def applier_validator(func_args) -> Optional[str]:
"""
Return:
- None: allow the tool call
- str : block the tool call and return message instead
"""
user_input = console.input(
f" 🛠 Cluster - [yellow]{cluster}[/yellow] ⎈ Proceed with this YAML? (yes/no): "
).strip().lower()
if user_input in {"yes", "y"}:
return None
if user_input in {"no", "n"}:
console.print("[red]Exiting process.[/red]")
sys.exit(0)
return user_input
async with MCPServerManager(sys.argv[1]) as server_manager:
server_manager.register_validator("yaml_applier", applier_validator)
mcp_server_tools = await server_manager.agent_sdk_tools()
engineer = Agent(...)
Configure your MCP environment with optional server enabling and tool exclusion:
{
"mcpServers": {
"fetch": {
"command": "uvx",
"args": ["mcp-server-fetch"]
},
"youtube": {
"command": "npx",
"args": ["-y", "github:anaisbetts/mcp-youtube"],
"exclude_tools": ["..."]
},
"mcp-server-commands": {
"command": "npx",
"args": ["mcp-server-commands"],
"requires_confirmation": [
"run_command",
"run_script"
],
"enabled": false
},
"multicluster-mcp-server": {
"command": "node",
"args": [".../multicluster-mcp-server/build/index.js"],
"enabled": false
}
}
}
- Use
"enabled": true/false
to activate or deactivate servers. - Use
"exclude_tools"
to omit unnecessary tools from the current MCP server.
Detailed documentation coming soon!
Contributions and suggestions are welcome! Please open an issue or submit a pull request.
liteMCP is available under the MIT License.