Skip to content

Reinforcement Learning for Automated Stock Portfolio Allocation

Notifications You must be signed in to change notification settings

zdeneklapes/investai

Repository files navigation

INVESTAI - Reinforcement Learning for Automated Stock Portfolio Allocation

README:


AUTHOR

Supervisor

DESCRIPTION

This project implements:

  • training and testing pipeline of reinforcement learning algorithms for portfolio allocation with connection to W&B
  • dataset creation from stock data
  • baseline creation from stock data
  • creating report for thesis

Folder structure investai/:

  • investai: Whole thesis code is here
  • investai/shared: Shared code throughout the project
  • investai/shared/tests: Tests for utils.py
  • investai/raw_data: Downloading and processing of raw data
  • investai/extra/math/finance/shared: Baseline creation
  • investai/extra/math/finance/ticker: Downloading and processing of raw data
  • investai/run/portfolio_allocation/thesis: Training and testing scripts
  • investai/run/portfolio_allocation/thesis/dataset: Datasets creation scripts
  • investai/run/portfolio_allocation/envs: Portfolio allocation environments
  • investai/run/shared: Shared code throughout only for scripts in run folder
  • investai/run/shared/sb3: Sweep configuration for Stable Baselines3 and algorithms of Stable Baselines3
  • investai/run/shared/dataset: Shared code for dataset creation
  • investai/run/shared/callback: Callbacks for training

Folder structure out/:

Out folder is created when whatever script is run. It contains:

  • out: Output folder
  • out/baseline: Baseline csv files
  • out/dataset: Dataset csv files
  • out/figure: Figure png files and latex files for thesis
  • out/model: Model files, WandB files, TensorBoard files and history

INSTALLATION

1. Install dependencies

# venv
mkdir -p out/baseline out/dataset out/model
python3 -m venv venv
source venv/bin/activate
pip3 install -r requirements.txt

2. Create .env file

In the root directory create .env file with the following content and fill in the values, especially WANDB_API_KEY:

# W&B
WANDB_API_KEY=''
WANDB_ENTITY='investai'
WANDB_PROJECT='portfolio-allocation'
WANDB_TAGS='["None"]'
WANDB_JOB_TYPE='train'
WANDB_RUN_GROUP='exp-1'
WANDB_MODE='online'
WANDB_DIR='${PWD}/out/model'


# CUDA - for TensorRT to find CUDA libraries
LD_LIBRARY_PATH='${LD_LIBRARY_PATH}:${HOME}/venv/lib/python3.10/site-packages/nvidia/cuda_runtime/lib/:${HOME}/venv/lib/python3.10/site-packages/tensorrt/'

3. Run Program

Run Tests

./test.sh --prepare-files # Remove out folder, and download datasets from W&B (You must be logged in/API key set)
./test.sh --test-dataset # Test dataset creation (this will not work without raw data in './data/' folder)
./test.sh --test-other # Test other scripts: train, test, baseline, ...

Print help

PYTHONPATH=$PWD/investai python3 \
    investai/run/portfolio_allocation/thesis/train.py \
        --help

Single Run (train/test)

PYTHONPATH=$PWD/investai python3 \
    investai/run/portfolio_allocation/thesis/train.py \
    --dataset-paths out/dataset/stockfadailydataset.csv \
    --algorithms ppo \
    --project-verbose='i' \
    --train-verbose=1 \
    --total-timesteps=1000 \
    --train=1 \
    --test=1 \
    --env-id=1 \
    --wandb=1 \
    --wandb-run-group="exp-run-1" \
    --wandb-verbose=1 \
    --baseline-path=out/baseline/baseline.csv

Sweep Run: 3 runs with random hyperparameters over 2 datasets and 5 algorithms (train/test)

PYTHONPATH=$PWD/investai python3 \
  investai/run/portfolio_allocation/thesis/train.py \
  --dataset-paths \
      out/dataset/stockfadailydataset.csv \
      out/dataset/stockcombineddailydataset.csv \
  --algorithms \
      ppo \
      a2c \
      td3 \
      ddpg \
      sac \
  --project-verbose='i' \
  --train-verbose=1 \
  --total-timesteps=1000 \
  --train=1 \
  --test=1 \
  --env-id=1 \
  --wandb=1 \
  --wandb-sweep=1 \
  --wandb-sweep-count=3 \
  --wandb-verbose=1 \
  --wandb-run-group="exp-sweep-1" \
  --baseline-path=out/baseline/baseline.csv

About

Reinforcement Learning for Automated Stock Portfolio Allocation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages