Skip to content

zhangdan8962/CERT

Repository files navigation

BERT on MOCO

This repository contains code for BERT on STILTs. It is a fork of the Hugging Face implementation of BERT.

MOCO task

Data Preparation

You need to augment your data via two different ways and save them in the *'augment.csv' in the same form.

Frist way: English --> Chinese --> English

Second way: English --> German --> English

Model Output

Before training, you need to build the moco_model with mkdir moco_model

Train

You need to change the number of negtive samples (number of augmented data) in MOCO.py line 84 , you can also change the epoch: line 41, batch size:line 45, learning rate:line 50, and temperature: line 90

You can train on the MOCO task with:

CUDA_VISIBLE_DEVICES=0 python MOCO.py

Transform Model

After training, you can extract encoder_k from the whole model with

python trans.py

num_labels=2 (The number of output labels--2 for binary classifier) You can increase this for multiple classification

=======

finetune Models

Preparation

You will need to download the GLUE data to run our tasks. See here.

You will also need to set the two following environment variables:

  • GLUE_DIR: This should point to the location of the GLUE data downloaded from jiant.
  • BERT_ALL_DIR: Set BERT_ALL_DIR=/PATH_TO_THIS_REPO/cache/bert_metadata
    • For mor general use: BERT_ALL_DIR should point to the location of BERT downloaded from here. Importantly, the BERT_ALL_DIR needs to contain the files uncased_L-24_H-1024_A-16/bert_config.json and uncased_L-24_H-1024_A-16/vocab.txt.

You can also change the dataset: line24 and the epoch: line89:

Example 1: Generating Predictions

To generate validation/test predictions, as well as validation metrics, run something like the following:

export GLUE_DIR=./data/MNLI 
export TASK=rte
export BERT_LOAD_PATH=path/to/mnli__rte.p
export OUTPUT_PATH=rte_output

python train.py \
    --task_name $TASK \
    --do_val --do_test \
    --do_lower_case \
    --bert_model bert-large-uncased \
    --bert_load_mode full_model_only \
    --bert_load_path $BERT_LOAD_PATH \
    --eval_batch_size 64 \
    --output_dir $OUTPUT_PATH
Example 2: Fine-tuning from vanilla BERT

We recommend training with a batch size of 16/24/32.

export GLUE_DIR=./data/MNLI                                                                                              
export BERT_ALL_DIR=./   
export TASK=mnli
export OUTPUT_PATH=mnli_output

python train.py \
    --task_name $TASK \
    --do_train --do_val --do_test --do_val_history \
    --do_save \
    --do_lower_case \
    --bert_model bert-large-uncased \
    --bert_load_mode from_pretrained \
    --bert_save_mode model_all \
    --train_batch_size 24 \
    --learning_rate 2e-5 \
    --output_dir $OUTPUT_PATH
Example 3: Fine-tuning from MOCO model
export GLUE_DIR=./data/RTE
export PRETRAINED_MODEL_PATH=/path/to/moco.p
export TASK=rte
export OUTPUT_PATH=rte_output

python train.py \
    --task_name $TASK \
    --do_train --do_val --do_test --do_val_history \
    --do_save \
    --do_lower_case \
    --bert_model bert-large-uncased \
    --bert_load_path $PRETRAINED_MODEL_PATH \
    --bert_load_mode model_only \
    --bert_save_mode model_all \
    --train_batch_size 24 \
    --learning_rate 2e-5 \
    --output_dir $OUTPUT_PATH

You can take example.sh as an example.

Submission to GLUE leaderboard

We have included helper scripts for exporting submissions to the GLUE leaderboard. To prepare for submission, copy the template from cache/submission_template to a given new output folder:

cp -R cache/submission_template /path/to/new_submission

After running a fine-tuned/pretrained model on a task with the --do_test argument, a folder (e.g. rte_output) will be created containing test_preds.csv among other files. Run the following command to convert test_preds.csv to the submission format in the output folder.

python format_for_glue.py\
    --task-name rte \
    --input-base-path /path/to/rte_output \
    --output-base-path /path/to/new_submission

Once you have exported submission predictions for each task, you should have 11 .tsv files in total. If you run wc -l *.tsv, you should see something like the following:

   1105 AX.tsv
   1064 CoLA.tsv
   9848 MNLI-mm.tsv
   9797 MNLI-m.tsv
   1726 MRPC.tsv
   5464 QNLI.tsv
 390966 QQP.tsv
   3001 RTE.tsv
   1822 SST-2.tsv
   1380 STS-B.tsv
    147 WNLI.tsv
 426597 total 

Next run zip -j -D submission.zip *.tsv in the folder to generate the submission zip file. Upload the zip file to https://gluebenchmark.com/submit to submit to the leaderboard.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published