Skip to content

ziesski/GGR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

90 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Imageomics-Species-ReID

Service supporting reidentification with machine learning for various animal species based on Wildbook's Image Analysis (WBIA) by WildMe

Requirements

Setup on Windows

  • Install a Conda-based Python 3 distribution
  • Install Windows Subsystem for Linux with wsl --install or visit Install WSL for further instructions
  • Activate WSL with wsl and navigate to the desired directory
  • Install Mambaforge:
curl -L https://github.com/conda-forge/miniforge/releases/latest/download/Mambaforge-Linux-x86_64.sh -o Mambaforge-Linux-x86_64.sh
bash Mambaforge-Linux-x86_64.sh
  • When you are asked the following question, answer with yes:
Do you wish the installer to prepend the install location to PATH ...? [yes|no]
  • Clone the repository:
git clone https://github.com/Ziesski/GGR.git
cd GGR
  • Install snakemake and other dependencies within an isolated environment (smk_pipeline can be replaced with an alternative name):
conda activate base
mamba env create --name smk_pipeline --file environment.yaml
conda activate smk_pipeline

Required Files

Add the directory to the input images in the root of the repository.

mkdir test_dataset

Insert the ca classifier and viewpoint classifier models into the test_dataset directory and mark it in config.yaml.

Inser the lca verifier probs into the test_dataset directory and mark it in config.yaml.

Add ground truth annotations to test_dataset if you want to filter animal detections.

You can adjust src paths in config.yaml

GGR 
│ # additional files
├── test_dataset
│   ├── your_viewpoint_classifier.pth
│   ├── your_ca_classifier.pth
│   ├── your_verifiers_probs.json
│   └── intermediate/output folders and files
├── images
│ # repository files
└── ...

Alternative Setup

  • Clone the repository:
git clone https://github.com/Ziesski/GGR.git
  • Full and alternative instructions for installing snakemake can be found in the snakemake documentation (Installation | Setup)

Execution

  • Activate WSL with wsl and base conda environment with conda activate base if not active
  • Activate snakemake environment (smk_pipeline can be replaced with an alternative name):
conda activate smk_pipeline
  • Run the pipeline:
snakemake -s snakefile.smk --cores 1

Final results will appear in test_dataset/output and intermediate results will appear in labeled folders in test_dataset accordingly.

GGR-Specific Functions

  • Additional script extrapolate_ggr_gps.py extrapolates from existing GPS data to fill in for missing GPS data for images from other cameras.
  • Run in same environment by providing input and output image data .json paths:
python extrapolate_ggr_gps.py test_dataset/image_data.json test_dataset/image_data_complete.json

Tools

YOLO BioCLIP

Future Tasks

  • Implement threading for image parameter computation and validity checking if image import is too slow.
  • Set up pipeline within IDEA cluster and perform larger tests.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •