Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

bugfix #76

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
39 changes: 33 additions & 6 deletions UGATIT.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,8 @@
from networks import *
from utils import *
from glob import glob
from PIL import Image
import cv2

class UGATIT(object) :
def __init__(self, args):
Expand Down Expand Up @@ -153,13 +155,13 @@ def train(self):
real_A, _ = trainA_iter.next()
except:
trainA_iter = iter(self.trainA_loader)
real_A, _ = trainA_iter.next()
real_A, _ = next(trainA_iter)

try:
real_B, _ = trainB_iter.next()
except:
trainB_iter = iter(self.trainB_loader)
real_B, _ = trainB_iter.next()
real_B, _ = next(trainB_iter)

real_A, real_B = real_A.to(self.device), real_B.to(self.device)

Expand Down Expand Up @@ -254,13 +256,13 @@ def train(self):
real_A, _ = trainA_iter.next()
except:
trainA_iter = iter(self.trainA_loader)
real_A, _ = trainA_iter.next()
real_A, _ = next(trainA_iter)

try:
real_B, _ = trainB_iter.next()
except:
trainB_iter = iter(self.trainB_loader)
real_B, _ = trainB_iter.next()
real_B, _ = next(trainB_iter)
real_A, real_B = real_A.to(self.device), real_B.to(self.device)

fake_A2B, _, fake_A2B_heatmap = self.genA2B(real_A)
Expand Down Expand Up @@ -293,13 +295,13 @@ def train(self):
real_A, _ = testA_iter.next()
except:
testA_iter = iter(self.testA_loader)
real_A, _ = testA_iter.next()
real_A, _ = next(testA_iter)

try:
real_B, _ = testB_iter.next()
except:
testB_iter = iter(self.testB_loader)
real_B, _ = testB_iter.next()
real_B, _ = next(testB_iter)
real_A, real_B = real_A.to(self.device), real_B.to(self.device)

fake_A2B, _, fake_A2B_heatmap = self.genA2B(real_A)
Expand Down Expand Up @@ -363,8 +365,33 @@ def load(self, dir, step):
self.disLA.load_state_dict(params['disLA'])
self.disLB.load_state_dict(params['disLB'])

def build_model_for_demo(self):
""" Define Generator, Discriminator """
self.genA2B = ResnetGenerator(input_nc=3, output_nc=3, ngf=self.ch, n_blocks=self.n_res, img_size=self.img_size, light=self.light).to(self.device)
# self.genB2A = ResnetGenerator(input_nc=3, output_nc=3, ngf=self.ch, n_blocks=self.n_res, img_size=self.img_size, light=self.light).to(self.device)
# self.disGA = Discriminator(input_nc=3, ndf=self.ch, n_layers=7).to(self.device)
# self.disGB = Discriminator(input_nc=3, ndf=self.ch, n_layers=7).to(self.device)
# self.disLA = Discriminator(input_nc=3, ndf=self.ch, n_layers=5).to(self.device)
# self.disLB = Discriminator(input_nc=3, ndf=self.ch, n_layers=5).to(self.device)
params = torch.load('results/selfie2anime_params_latest.pt')
self.genA2B.load_state_dict(params['genA2B'])

def inference(self, d):
#d = cv2.imread("/home/circulus/api-test/vision-test/face3.jpg")
h, w, _ = d.shape
d = cv2.resize(d, (256,256))
d = (d)/127.5 -1
d = np.transpose(d[np.newaxis,:,:,:], (0,3,1,2)).astype(np.float32)
d = torch.from_numpy(d).to(self.device)

fake_A2B, _, fake_A2B_heatmap = self.genA2B(d)
img = cv2.resize(RGB2BGR(tensor2numpy(denorm(fake_A2B[0])))*255.0, (w,h))
print(" [*] Load SUCCESS")
return img

def test(self):
model_list = glob(os.path.join(self.result_dir, self.dataset, 'model', '*.pt'))

if not len(model_list) == 0:
model_list.sort()
iter = int(model_list[-1].split('_')[-1].split('.')[0])
Expand Down
17 changes: 14 additions & 3 deletions main.py
Original file line number Diff line number Diff line change
Expand Up @@ -68,16 +68,27 @@ def main():
# open session
gan = UGATIT(args)

# build graph
gan.build_model()

if args.phase == 'train' :
# build graph
gan.build_model()
gan.train()
print(" [*] Training finished!")

if args.phase == 'test' :
gan.build_model()
gan.test()
print(" [*] Test finished!")

if args.phase == 'demo':
gan.build_model_for_demo()
#cap = cv2.VideoCapture(0)
#_, img = cap.read()
img = cv2.imread("/home/circulus/project/Face-Attribute-Classification/img_align_celeba/000156.jpg")
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

res = gan.inference(img)
cv2.imwrite("AAA.jpg", res)
print(" [*] Demo finished!")

if __name__ == '__main__':
main()