Skip to content
This repository was archived by the owner on Jul 2, 2022. It is now read-only.

zy618/MedTS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

a5e523c · Jul 21, 2021

History

29 Commits
Jun 23, 2021
Jun 23, 2021
Jun 23, 2021
Jun 23, 2021
Jul 21, 2021
Jun 23, 2021
Jun 23, 2021

Repository files navigation

MedTS

This repository contains codes and models for the paper:

MedTS: A BERT-based Generation Model to Transform Medical Texts to SQL Queries for Electronic Medical Records

Requirements

Environments

pytorch >= 1.4.0
transformers == 3.0.2
nltk, numpy, tqdm, matplotlib, idna, tushare, sqlalchemy, pandas, 
boto3, requests, regex, more_itertools, interval, translate, num2words

Data preparation

We provide the processed dataset in ./data, including train, validation and test sets.

The original dataset can be found from TREQS.

Training

  • run ./train.sh to train the model.
python -u ./src/train.py \
  --dataset $DATA_DIR \
  --train_data $TRAIN_DATA_PATH \
  --epoch $EPOCH_NUM \
  --save $SAVED_MODEL_DIR \
  --cuda \
  --cuda_device_num $DEVICE_NUM\

Predicting

  • run ./predict.sh to get the prediction on the validation/test set.
python -u ./src/predict.py \
  --dataset $DATA_DIR \
  --eval_data $PREDICT_DATA_PATH \
  --model_dir $SAVED_MODEL_DIR \
  --model $SAVED_MODEL_NAME \
  --output_dir $OUTPUT_DIR \
  --cuda \
  --cuda_device_num $DEVICE_NUM \

Evaluation

The details of evaluation can be found in TREQS_evaluation, which is based on the publicly available real-world de-identified Medical Information Mart for Intensive Care III (MIMIC III) dataset.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published